首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Renal carriage and shedding of leptospires is characteristic of carrier or maintenance animal hosts. Sporadic reports indicate that after infection, humans may excrete leptospires for extended periods. We hypothesized that, like mammalian reservoir hosts, humans develop asymptomatic leptospiruria in settings of high disease transmission such as the Peruvian Amazon.

Methodology/Principal Findings

Using a cross-sectional study design, we used a combination of epidemiological data, serology and molecular detection of the leptospiral 16S rRNA gene to identify asymptomatic urinary shedders of Leptospira. Approximately one-third of the 314 asymptomatic participants had circulating anti-leptospiral antibodies. Among enrolled participants, 189/314 (59%) had evidence of recent infection (microscopic agglutination test (MAT0 ≥1∶800 or ELISA IgM-positive or both). The proportion of MAT-positive and high MAT-titer (≥1∶800) persons was higher in men than women (p = 0.006). Among these people, 13/314 (4.1%) had Leptospira DNA-positive urine samples. Of these, the 16S rRNA gene from 10 samples was able to be sequenced. The urine-derived species clustered within both pathogenic (n = 6) and intermediate clades of Leptospira (n = 4). All of the thirteen participants with leptospiral DNA in urine were women. The median age of the DNA-positive group was older compared to the negative group (p≤0.05). A group of asymptomatic participants (“long-term asymptomatic individuals,” 102/341 (32.5%) of enrolled individuals) without serological evidence of recent infection was identified; within this group, 6/102 (5.9%) excreted pathogenic and intermediate-pathogenic Leptospira (75–229 bacteria/mL of urine).

Conclusions/Significance

Asymptomatic renal colonization of leptospires in a region of high disease transmission is common, including among people without serological or clinical evidence of recent infection. Both pathogenic and intermediate Leptospira can persist as renal colonization in humans. The pathogenic significance of this finding remains to be explored but is of fundamental biological significance.  相似文献   

2.

Background

Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world''s most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin.

Methodology/Principal Findings

Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32.

Conclusions/Significance

The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira.  相似文献   

3.
Purine Analogue Sensitivity and Lipase Activity of Leptospires   总被引:4,自引:1,他引:3       下载免费PDF全文
The genus Leptospira can be divided into three groups based on purine analogue sensitivity and lipase (trioleinase) activity. Group 1 contains members of the “parasitic complex” of leptospires which initially cannot grow in media containing 10 μg of 2,6-diaminopurine (DAP) per ml or 200 μg of 8-azaguanine per ml. In addition, leptospires in this group possess lipase activity. Group 2 also contains members of the “parasitic complex” of leptospires. Although these leptospires are similarly sensitive to 8-azaguanine, they differ from group 1 leptospires in that they grow in media containing 10 μg of DAP per ml, and they do not possess detectable lipase activity. Group 3 consists of leptospires belonging to the “biflexa complex.” These leptospires are resistant to both purine analogues and have lipase activity.  相似文献   

4.
Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (Kd, 104±19 nM) and aortic elastin (Kd, 152±27 nM). It also binds fibrinogen (Kd, 244±15 nM), fibrinogen fragment D (Kd, 132±30 nM), plasma fibronectin (Kd, 359±68 nM), and murine laminin (Kd, 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.  相似文献   

5.

Background

Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires.

Methodology/Principal Findings

We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC''s and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC''s with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires.

Conclusions/Significance

Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.  相似文献   

6.
Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans.  相似文献   

7.
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates.  相似文献   

8.
BackgroundLeptospirosis, caused by Leptospira bacteria, is a common zoonosis worldwide, especially in the tropics. Reservoir species and risk factors have been identified but surveys for environmental sources are rare. Furthermore, understanding of environmental Leptospira containing virulence associated genes and possibly capable of causing disease is incomplete, which may convolute leptospirosis diagnosis, prevention, and epidemiology.Methodology/Principal findingsWe collected environmental samples from 22 sites in Puerto Rico during three sampling periods over 14-months (Dec 2018-Feb 2020); 10 water and 10 soil samples were collected at each site. Samples were screened for DNA from potentially pathogenic Leptospira using the lipL32 PCR assay and positive samples were sequenced to assess genetic diversity. One urban site in San Juan was sampled three times over 14 months to assess persistence in soil; live leptospires were obtained during the last sampling period. Isolates were whole genome sequenced and LipL32 expression was assessed in vitro.We detected pathogenic Leptospira DNA at 15/22 sites; both soil and water were positive at 5/15 sites. We recovered lipL32 sequences from 83/86 positive samples (15/15 positive sites) and secY sequences from 32/86 (10/15 sites); multiple genotypes were identified at 12 sites. These sequences revealed significant diversity across samples, including four novel lipL32 phylogenetic clades within the pathogenic P1 group. Most samples from the serially sampled site were lipL32 positive at each time point. We sequenced the genomes of six saprophytic and two pathogenic Leptospira isolates; the latter represent a novel pathogenic Leptospira species likely belonging to a new serogroup.Conclusions/SignificanceDiverse and novel pathogenic Leptospira are widespread in the environment in Puerto Rico. The disease potential of these lineages is unknown but several were consistently detected for >1 year in soil, which could contaminate water. This work increases understanding of environmental Leptospira diversity and should improve leptospirosis surveillance and diagnostics.  相似文献   

9.
10.
Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection.  相似文献   

11.
Leptospirosis is caused by pathogenic species of the Leptospira genus. Animals can have two roles in the epidemiological cycle: they can be an accidental host and suffer of the disease or a reservoir host which does not express any clinical sign and shed bacteria in their urine. Some of the most known reservoirs for leptospirosis are certain rodent species, but the situation is less clear for aquatic rodents, especially for coypu (Myocastor coypus). It has been shown that this species can have kidney carriage for leptospirosis, but the relationship between carriage and individuals or population health has not been investigated yet. We trapped 133 coypus in two wetlands in the East of France during 3 years. For each animal, a complete necropsy, leptospirosis serology, and a specific real-time quantitative PCR (qPCR) for pathogenic leptospires were performed; in addition, for some animals, a specific kidney culture for leptospires and histology on kidney were performed. In spite of a high seroprevalence (respectively 76 % and 64 %) and of a significant prevalence of kidney carriage in both areas (respectively 12.1 % and 8.0 % of positive qPCR on kidney), the trapped animals seemed in good health, and the population did not seem to be affected by the circulation of the bacteria. These findings are concurring arguments to consider coypu as a real reservoir for leptospirosis.  相似文献   

12.
We report in this work that Leptospira strains, virulent L. interrogans serovar Copenhageni, attenuated L. interrogans serovar Copenhageni and saprophytic L. biflexa serovar Patoc are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits thrombin- induced fibrin clot formation that may affect the haemostatic equilibrium. Additionally, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of Leptospira causes degradation of human Fg. The data suggest that PLA-coated leptospires were capable to employ their proteolytic activity to decrease one substrate of the coagulation cascade. We also present six leptospiral adhesins and PLG- interacting proteins, rLIC12238, Lsa33, Lsa30, OmpL1, rLIC11360 and rLIC11975, as novel Fg-binding proteins. The recombinant proteins interact with Fg in a dose-dependent and saturable fashion when increasing protein concentration was set to react to a fix human Fg concentration. The calculated dissociation equilibrium constants (KD) of these reactions ranged from 733.3±276.8 to 128±89.9 nM for rLIC12238 and Lsa33, respectively. The interaction of recombinant proteins with human Fg resulted in inhibition of fibrin clot by thrombin-catalyzed reaction, suggesting that these versatile proteins could mediate Fg interaction in Leptospira. Our data reveal for the first time the inhibition of fibrin clot by Leptospira spp. and presents adhesins that could mediate these interactions. Decreasing fibrin clot would cause an imbalance of the coagulation cascade that may facilitate bleeding and help bacteria dissemination  相似文献   

13.
The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a “switch” from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease.  相似文献   

14.
Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp.  相似文献   

15.

Background

Urban leptospirosis has increasingly been reported in both developing and developed countries. The control of the disease is limited because our understanding of basic aspects of the epidemiology, including the transmission routes of leptospires among rat populations, remains incomplete. Through the ability to distinguish among Leptospira strains in rats, multispacer sequence typing (MST) could provide a modern understanding of Leptospira epidemiology; however, to our knowledge, the distribution of Leptospira strains among urban rat colonies has not been investigated using MST.

Aims and Methodology

The objective of this study was to identify the Leptospira strains present in rats (Rattus norvegicus) in Lyon (France) using MST and to characterize their spatial distribution. Kidneys and urine were collected from rats trapped live in seven locations in the city and in one suburban location. Each location was considered to represent a rat colony. Bacterial cultures and quantitative polymerase chain reaction (qPCR) assays were performed, and the L. interrogans DNA identified was then genotyped using MST. The distributions of Leptospira strains were spatially described.

Key Results

Among 84 wild rats, MST profiles were obtained in 35 of 37 rats that had a positive result for L. interrogans by bacterial culture and/or qPCR analyses. All of the MST profiles were related to reference strains previously isolated from human patients that belong to the serogroup Icterohaemorrhagiae and the serovars [strain(s)] Copenhageni [Wijinberg or M20] (n = 26), Icterohaemorrhagiae [CHU Réunion] (n = 7), Icterohaemorrhagiae [R1] (n = 1) and Copenhageni [Shibaura 9] (n = 1). Each colony was infected with leptospires having the same MST profile.

Major Conclusions

This study demonstrated that MST could be used for the purpose of field studies, either on culture isolates or on DNA extracted from kidneys and urine, to distinguish among L. interrogans isolates in rats. MST could thus be used to monitor their distributions in urban rats from the same city, thereby providing new knowledge that could be applied to explore the circulation of L. interrogans infection in rat colonies. Because the strains are related to those previously found in humans, this application of MST could aid in the source tracking of human leptospirosis, and the findings would be relevant for public health purposes according to the One Health principle.  相似文献   

16.
Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. Most of the outbreaks of leptospirosis occur after floods caused by heavy rain in countries where Leptospira spp. are endemic. It has been believed that the overflow of seawater rarely causes outbreaks of leptospirosis because the leptospires are killed by salt water. On 8 November 2013, a storm surge caused by Super Typhoon Haiyan (Yolanda) inundated the entire coastal areas of Tacloban and Palo in Leyte, Philippines. The present study was carried out in order to determine whether the environmental leptospires in soil were able to survive after the storm surge in the affected areas. We collected 23 wet soil samples along the coastal areas of Tacloban and Palo 2 months after the storm surge. The samples were suspended in HEPES buffer, and the supernatants were cultured in liquid or semisolid Korthof''s medium supplemented with five antimicrobial agents to inhibit the growth of contaminants. Leptospires were isolated from primary cultures of 22 out of 23 samples. The DNA of pathogenic Leptospira species was detected in 11 samples (47.8%) by analysis of flaB by nested PCR. Eventually, two pathogenic Leptospira strains were isolated and showed the highest 16S rRNA gene sequence similarity to Leptospira kmetyi. When these isolates were experimentally mixed with soil, they were found to survive in seawater for 4 days. These results show the possibility that leptospires living in soil survived after the storm surge. Our findings may serve as a warning that when seawater inundates the land during a storm surge or a tsunami, an outbreak of leptospirosis could occur in the disaster-stricken area.  相似文献   

17.
The potential leptospiral infection hazard in the use of vaccines prepared from canine kidney monolayer cultures was studied. Cell cultures were prepared from kidneys of dogs experimentally infected with Leptospira serotype canicola. Viable leptospires were found in kidney cell suspensions at the time of seeding, surviving trypsinization either at room temperature for approximately 2 hr or overnight at 4 C, even in the presence of antibiotics. In tissue cultures maintained without antibiotics, leptospires were cultured up to the time of involution of cells at 25 to 34 days of incubation. Cytopathogenic effects of leptospires on cultured kidney cells were not noted; neither was growth of leptospires remarkable. Generally, the leptospire culture titer decreased to 10-4 or 10-5 at the 4th hr or 1st day of incubation to 10-1 or negative by the 30th or 34th day of incubation. The addition of either a combination of penicillin (100 units per ml) plus streptomycin (100 μg/ml) or polymyxin B (50 units per ml) plus dihydrostreptomycin (100 μg/ml) to seeding cell suspensions resulted in the elimination of viable leptospires by the 4th hr of incubation. From cell cultures treated with neomycin (100 μg/ml) or chloramphenicol (100 μg/ml), leptospires were recovered, respectively, after 24 and 48 hr, but not thereafter. It was apparent that antibiotics, particularly the combination of polymyxin B and dihydrostreptomycin, could be effectively used to eliminate leptospires in tissue culture. Other antibiotics with known antileptospiral activities probably would be effective also. If antibiotics are not used in canine kidney tissue culture employed for viral vaccine preparations, rigid testing for the presence of leptospires in donor dogs and tissue-culture vaccine is indicated.  相似文献   

18.
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.  相似文献   

19.
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.  相似文献   

20.
BackgroundLeptospirosis, a zoonosis caused by species in the spirochete genus Leptospira, is endemic to the Yaeyama region in Okinawa, subtropical Japan. Species of the P1 subclade “virulent” group, within the genus Leptospira, are the main etiological agents of leptospirosis in Okinawa. However, their environmental persistence is poorly understood. This study used a combination of bacterial isolation and environmental DNA (eDNA) metabarcoding methods to understand the eco-epidemiology of leptospirosis in this endemic region.FindingsPolymerase chain reaction (PCR) characterized twelve human clinical L. interrogans isolates belonging to the P1 subclade “virulent” subgroup and 11 environmental soil isolates of the P1subclade “low virulent” subgroup (genetically related to L. kmetyi, n = 1; L. alstonii, n = 4; L. barantonii, n = 6) from the Yaeyama region targeting four virulence-related genes (lipL32, ligA, ligB and lpxD1). Clinical isolates were PCR positive for at least three targeted genes, while all environmental isolates were positive only for lipL32. Analysis of infected renal epithelial cells with selected clinical and environmental strains, revealed the disassembly of cell-cell junctions for the Hebdomadis clinical strain serogroup. Comparison of leptospiral eDNA during winter and summer identified operational taxonomic units corresponding to the species isolated from soil samples (L. kmetyi and L. barantonii) and additional P2 subclade species (L. licerasiae, L. wolffii-related, among others) that were not detected by soil cultivation. Total Leptospira read counts were higher in summer than in winter and the analysis of leptospiral/animal eDNA relationship suggested Rattus spp. as a potential reservoir animal.ConclusionOur study demonstrated high environmental Leptospira diversity in the Yaeyama region, particularly during summer, when most of the leptospirosis cases are reported. In addition, several Leptospira species with pathogenic potential were identified that have not yet been reported in Yaeyama; however, the environmental persistence of P1 subclade species previously isolated from human clinical cases in this region was absent, suggesting the need of further methodology development and surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号