首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对数量性状位点的精细定位,本文采用群体的极端样本,利用稠密的标记位点,通过比较标记的熵和条件熵,给出了一个基于熵的指数。该指数是标记基因和性状位点间连锁不平衡系数的函数,它不依赖于标记基因的频率。该指数对应我们之前提出的数量性状位点精细定位的哈迪-温伯格不平衡(HWD)指数,但在精细定位数量性状位点时,本文提出的指数的效能要高于哈迪-温伯格不平衡(HWD)指数。通过计算机模拟,文章调查了不同遗传参数下该指数的性质。模拟结果表明该指数用作精细定位是有效的。  相似文献   

2.
植物QTL定位方法的研究进展   总被引:17,自引:0,他引:17  
高用明  朱军 《遗传》2000,22(3):175-179
本文系统地介绍了QTL定位的单一标记分析法、区间作图法以及复合区间作图法、混合显性模型的分析方法,概述了一些主要定位方法的分析原理、存在的主要优缺点。单一标记分析法可以采用方差分析、回归分析或似然比检验的方法分析。区间作图法和复合区间作图法是基于两个相邻标记的QTL定位方法,可采用回归分析或最大似然法分析。复合区间作图法在模型中包括了与其他QTL连锁的标记,可以提高作图的精度和效率。混合线性模型的QTL定位方法可以包括复杂的遗传效应及QTL与环境的互作效应,具有更广阔的应用前景。 Abstract:QTL mapping methods are reviewed for single-marker mapping,interval mapping,composite interval mapping,and mixed-model based method.Statistical approaches along with their properties are discussed for the mapping methods.ANOVA,regression method and likelihood ratio test can be applied in single-marker mapping.Interval mapping and composite interval mapping can be conducted,based on two interval markers,by regression method and maximum likelihood method.Since markers linked with other QTLs are include in the model,composite interval mapping is more precision and powerful.Mapping QTL by mixed-model approaches is more applicable when complicated QTL effects as well as QTL by environment interaction are analyzed.  相似文献   

3.
猪的肉质性状基因定位研究进展   总被引:32,自引:5,他引:27  
苏玉虹  熊远著  邓昌彦 《遗传》2000,22(5):334-338
随着生活水平的提高,猪肉的肉质问题已引起消费者和生产者的重视。遗传 因素是改善肉质品质的关键。对猪的肉质性状进行数量性状位点(QTL)定位是当前国际畜禽遗传育种的一个热点。本文较全面地介绍了有关肉质基因定位的情况,包括基本明确的主效基因:氟烷基因和酸肉基因;肌内脂肪的统计分析、候选基因及基因扫描定位结果:以及肌纤维、嫩度、多汁性、失水率、pH值和肉色的定位。同时论讨了肉质检验和基因定位面临的问题。 Abstract:People tend to be interested in meat quality when the standand of living has been increased.Location of quantitative trait loci(QTL)affecting meat quality were performed in many countries.The objective of this review is to provide a detailed introduction of meat quality mapping in pig.It included halothane gene,acid meat gene,intramuscular fat,firmness,fruice,drop loss,pH value and meat color.It also discussed the problems of meat quality testing and QTL mapping.  相似文献   

4.
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms.  相似文献   

5.
玉米抗南方锈病基因的QTL定位   总被引:1,自引:0,他引:1  
为发掘新的抗南方锈病基因资源,本研究以感病自交系黄早四为母本、抗病自交系W456为父本,构建F2群体并开展抗病基因定位研究。采用人工接种鉴定的方法对两个亲本、F1、F2群体及对照材料进行表型鉴定和遗传分析。利用均匀覆盖10条染色体的200个SSR标记,分析240个F2单株的基因型并构建含有200个SSR位点的遗传连锁图,连锁图总长度3331 cM,标记间平均距离16.6 cM。使用QTL IciMapping V4.1软件中的完备区间作图法对抗病QTL进行分析,共检测到6个控制南方锈病的QTL:qSCR3、qSCR7、qSCR8-1、qSCR8-2、qSCR9和qSCR10,邻近标记分别为umc2105和umc1729、umc1066和bnlg2271、umc1904和umc1984、umc1984和bnlg1651、umc1957和bnlg1401、umc2034和umc1291,分别位于3、7、8、9和10号染色体上,其中8号染色体上有两个位点,标记区间长度在5~19 cM之间。单个QTL的表型贡献率在2.61%~24.19%之间,可以解释表型总变异的62.3%,其中3个QTL贡献率大于10%,位于10号染色体上的qSCR10贡献率最大,可解释表型变异的24.19%。通过对目标区间标记加密,将该位点的定位区间进一步缩小到2.51 cM内,与两侧标记的距离分别是2.15 cM和0.36 cM。初步定位得到10号染色体上存在抗南方锈病的主效QTL,可为抗病品种的培育提供参考。  相似文献   

6.
The floral polymorphism tristyly involves three style morphs with a reciprocal arrangement of stigma and anther heights governed by two diallelic loci (S and M). Tristyly functions to promote cross‐pollination, but modifications to stamen position commonly cause transitions to selfing. Here, we integrate whole‐genome sequencing and genetic mapping to investigate the genetic architecture of the M locus and the genetic basis of independent transitions to selfing in tristylous Eichhornia paniculata. We crossed independently derived semi‐homostylous selfing variants of the long‐ and mid‐styled morph fixed for alternate alleles at the M locus (ssmm and ssMM, respectively), and backcrossed the F1 to the parental ssmm genotype. We phenotyped and genotyped 462 backcross progeny using 1450 genotyping‐by‐sequencing (GBS) markers and performed composite interval mapping to identify quantitative trait loci (QTL) governing style‐length and anther‐height variation. A QTL associated with the primary style‐morph differences (style length and anther height) mapped to linkage group 5 and spanned ~13–27.5 Mbp of assembled sequence. Bulk segregant analysis identified 334 genes containing SNPs potentially linked to the M locus. The stamen modifications characterizing each selfing variant were governed by loci on different linkage groups. Our results provide an important step towards identifying the M locus and demonstrate that transitions to selfing have originated by independent sets of mating‐system modifier genes unlinked to the M locus, a pattern inconsistent with a recombinational origin of selfing variants at a putative supergene.  相似文献   

7.
Saccharomyces cerevisiae strain W303 is a widely used model organism. However, little is known about its genetic origins, as it was created in the 1970s from crossing yeast strains of uncertain genealogy. To obtain insights into its ancestry and physiology, we sequenced the genome of its variant W303-K6001, a yeast model of ageing research. The combination of two next-generation sequencing (NGS) technologies (Illumina and Roche/454 sequencing) yielded an 11.8 Mb genome assembly at an N50 contig length of 262 kb. Although sequencing was substantially more precise and sensitive than whole-genome tiling arrays, both NGS platforms produced a number of false positives. At a 378× average coverage, only 74 per cent of called differences to the S288c reference genome were confirmed by both techniques. The consensus W303-K6001 genome differs in 8133 positions from S288c, predicting altered amino acid sequence in 799 proteins, including factors of ageing and stress resistance. The W303-K6001 (85.4%) genome is virtually identical (less than equal to 0.5 variations per kb) to S288c, and thus originates in the same ancestor. Non-S288c regions distribute unequally over the genome, with chromosome XVI the most (99.6%) and chromosome XI the least (54.5%) S288c-like. Several of these clusters are shared with Σ1278B, another widely used S288c-related model, indicating that these strains share a second ancestor. Thus, the W303-K6001 genome pictures details of complex genetic relationships between the model strains that date back to the early days of experimental yeast genetics. Moreover, this study underlines the necessity of combining multiple NGS and genome-assembling techniques for achieving accurate variant calling in genomic studies.  相似文献   

8.
Seed germination is a key life history transition for annual plants and partly determines lifetime performance and fitness. Germination speed, the elapsed time for a nondormant seed to germinate, is a poorly understood trait important for plants’ competitiveness and fitness in fluctuating environments. Germination speed varied by 30% among 18 Arabidopsis thaliana populations measured, and exhibited weak negative correlation with flowering time and seed weight, with significant genotype effect (P < 0.005). To dissect the genetic architecture of germination speed, we developed the extreme QTL (X‐QTL) mapping method in A. thaliana. The method has been shown in yeast to increase QTL mapping power by integrating selective screening and bulk‐segregant analysis in a very large mapping population. By pooled genotyping of top 5% of rapid germinants from ~100 000 F3 individuals, three X‐QTL regions were identified on chromosomes 1, 3 and 4. All regions were confirmed as QTL regions by sequencing 192 rapid germinants from an independent F3 selection experiment. Positional overlaps were found between X‐QTLs and previously identified seed, life history and fitness QTLs. Our method provides a rapid mapping platform in A. thaliana with potentially greater power. One can also relate identified X‐QTLs to the A. thaliana physical map, facilitating candidate gene identification.  相似文献   

9.
孙女设计中标记密度对QTL定位精确性的影响   总被引:5,自引:2,他引:5  
王菁  张勤  张沅 《遗传学报》2000,27(7):590-598
采用蒙特卡罗方法分析了在孙女设计中不同的嫩体结构、性状遗传力、QTL效应大小和QTL在染色体上的位置中个因素不同水平组合下4种标记密度(标记间隔5cM,10cM,20cM、50cM对QTL定位精确性(以均方误MSE为衡量指标)的影响,并从经济学角度探讨了应用于标记辅助选(MAS)的QTL定位的最佳标记密度。结果表明,一般说来,在各因素水平都较低时,MSE随标记密度加大而下降的相对幅度也较 小,反之  相似文献   

10.
Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data. Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE. In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas the TMM method should be used with caution.  相似文献   

11.
植物QTL分析的理论研究进展   总被引:2,自引:0,他引:2  
数量性状的表型是由数量性状基因座 ( Quantitative trait locus,QTL)和环境效应共同作用的结果。传统的数量遗传学采用统计学的方法由一级统计量和二级统计量描述处理 QTL的复合作用 ,估计各种遗传参数 (例如遗传力、遗传相关、遗传进度、有效因子数等 ) ,用于指导遗传育种实践。然而 ,在传统的数量遗传学分析中 ,往往假设数量性状受微效多基因控制 ,这些基因具有相同的并且是较微小的效应 ,所估计的遗传参数反映的是数量性状多基因系统的整体特征 ,其理论方法不能用于追踪研究和描述单个数量性状基因的作用。近年来 ,由于分子生物学技…  相似文献   

12.
维生素E (VE)是稻米营养品质的重要指标。水稻(Oryza sativa)是我国种植最广泛的粮食作物, 增加其籽粒的VE含量是实现国民营养强化的一条便捷有效的途径。该研究以籼稻华占(HZ)为父本, 粳稻热研2号(Nekken2)为母本, 构建120个重组自交系(RILs)群体。采用高效液相色谱法(HPLC)对RILs群体的VE各组分含量进行测定, 并基于构建的高密度分子遗传图谱进行QTL定位, 谱系分析后挖掘到122个VE总量和分量相关QTLs, 分布在12条染色体上。其中qT3α/to2-1的LOD值高达10.32, qT3α2-1的LOD值高达9.91, 另有多个控制各异构体含量的主效QTLs, 且区间内包含OsGGR1OsGGR2OsTCOsγTMT等VE生物合成基因。通过qRT-PCR检测亲本中VE合成基因的表达量, 发现在华占中候选基因的表达量均极显著高于热研2号, 推测这些基因的高表达是华占生育酚及生育三烯酚含量高于热研2号的原因。研究挖掘到的QTL数目较多, LOD值也较大, 为进一步筛选和培育高VE含量的水稻新品种奠定了分子基础, 同时为揭示水稻VE生物合成的分子调控机制提供了重要基因资源。  相似文献   

13.
Downy mildew (DM), caused by Pseudoperonospora cubensis (Berk. & M.A. Curtis) Rostovzev, is a worldwide major disease of cucumbers (Cucumis sativus L.). By screening 10 introgression lines (ILs) derived from interspecific hybridization between cucumber and the wild Cucumis, C. hystrix, through a whole plant assay, one introgression line (IL52) was identified with high DM‐resistance. IL52 was further used as a resistant parent to make an F2 population with ‘changchunmici’ (susceptible parent). The F2 population (300 plants) was investigated for DM‐yellowing, DM‐necrosis and DM‐resistance in the adult stage. A genetic map spanning 642.5 cM with 104 markers was constructed and used for QTL analysis from the population. Three QTL regions were identified on chromosome 5 and chromosome 6. By interval mapping analysis, two QTLs for DM‐resistance were determined on chromosome 5 (DM_5.1 and DM_5.2), which explained 17.9% and 14.2% of the variation, respectively. QTLs for DM‐yellowing were in the same regions as DM‐resistance. For DM‐necrosis, by interval mapping analysis, one QTL was determined on chromosome 5 (Necr_5.1) that explained 18.3% of the variation and one on chromosome 6 (Necr_6.1) that explained 13.9% of the variation. Our results indicated that the identification of molecular markers linked to the QTLs could be further applied for marker‐assisted selection (MAS) of downy mildew resistance in cucumber.  相似文献   

14.
Bulk segregant analysis was used to search for RAPD (random amplified polymorphic DNA) markers linked to gene(s) affecting oleic acid concentration in an F2 population from the Brassica rapa ssp. oleifera cross Jo4002 x a high oleic acid individual from line Jo4072. Eight primers (=8 markers) out of 104 discriminated the high and low bulks consisting of extreme individuals from the oleic acid distribution. These markers were analysed throughout the entire F2 population, and their association with oleic acid was studied using both interval mapping and ANOVA analysis. Six of the markers mapped to one linkage group. A quantitative trait locus (QTL) affecting oleic acid concentration was found to reside within this linkage group with a LOD score >15. The most suitable marker for oleic acid content is OPH-17, a codominant marker close (<4cM) to the QTL. The mean seed oleic acid content in the F2 individuals carrying the larger allele of this marker was 80.14±9.76%; in individuals with the smaller allele, 54.53±6.83%; in the heterozygotes, 65.47±8.15%. To increase reproducibility, the RAPD marker was converted into a SCAR (sequence characterized amplied region) marker with specific primers. Marker OPH-17 can be used to select spring turnip rape individuals with the desired oleic acid content.  相似文献   

15.
水稻(Oryza sativa)抽穗期是决定产量和品质的重要性状,在育种、制种及引种驯化过程中发挥重要作用。将热研2号(O. sativa subsp. japonica cv.‘Nekken2’)和华占(O. sativa subsp. indica cv.‘HZ’)杂交获得F1代,经连续多代自交得到120个重组自交系(RILs)群体。在常规水肥管理条件下,对120个RILs株系的抽穗时间进行统计分析。利用已构建好的高密度遗传图谱,对水稻抽穗期相关性状进行QTL定位分析,结果共检测到11个QTLs,分别位于第1、3、4、5、6、8和12号染色体上,其中1个LOD值高达5.75。通过分析QTLs区间内的候选基因,筛选出可能影响两亲本抽穗期的相关基因,并利用实时定量PCR进行基因表达量分析,发现LOC_Os03g03070、LOC_Os03g50310、LOC_Os03g55389、LOC_Os04g55510、LOC_Os08g07740和LOC_Os08g01670共6个基因在双亲间的表达量差异显著,其中LOC_Os03g50310在Nekken2中的表达量比H...  相似文献   

16.
Mapping of QTLs conferring resistance to bacterial leaf streak in rice   总被引:13,自引:0,他引:13  
A large F2 and a RI population were separately derived from a cross between two indica rice varieties, one of which was highly resistant to bacterial leaf streak (BLS) and the other highly susceptible. Following artificial inoculation of the RI population and over 2 years of testing, 11 QTLs were mapped by composite interval mapping (CIM) on six chromosomes. Six of the QTLs were detected in both seasons. Eight of the QTLs were significant following stepwise regression analysis, and of these, 5 with the largest effects were significant in both seasons. The detected QTLs explained 84.6% of the genetic variation in 1997. Bulked segregant analysis (BSA) of the extremes of the F2 population identified 3 QTLs of large effect. The 3 QTLs were dentical to 3 of the 5 largest QTLs detected by CIM. The independent detection of the same QTLs using two methods of analysis in separate mapping populations verifies the existence of the QTLs for BLS and provides markers to ease their introduction into elite varieties. Received: 13 October 1999 / Accepted: 29 October 1999  相似文献   

17.
贝叶斯统计在QTL作图中的应用研究进展   总被引:2,自引:0,他引:2  
敖雁  朱明星  徐辰武 《遗传》2007,29(6):668-674
在许多复杂情况下, 贝叶斯统计方法比经典数理统计方法能更直接解决问题, 且可有效整合部分先验信息, 但其需要高强度计算的特性曾限制了其广泛应用。近几十年来, 随着高速计算机的发展以及MCMC算法的不断提出, 贝叶斯方法已被用于群体遗传学、分子进化、连锁作图和数量遗传学等研究领域, 文章综述了数量遗传学中QTL作图的贝叶斯方法从简单到复杂的发展历程。  相似文献   

18.
19.
Schwartz K  Wenger JW  Dunn B  Sherlock G 《Genetics》2012,191(2):621-632
Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even enabling the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. To circumvent the sterility of this hybrid strain, we developed a novel method to genetically characterize its xylose-utilization phenotype, using a tetraploid intermediate, followed by bulk segregant analysis in conjunction with high-throughput sequencing. We found that this strain's growth in xylose is governed by at least two genetic loci, within which we identified the responsible genes: one locus contains a known xylose-pathway gene, a novel homolog of the aldo-keto reductase gene GRE3, while a second locus contains a homolog of APJ1, which encodes a putative chaperone not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a nongenetically tractable hybrid strain that contains a complex, polygenic trait, and identifies new avenues for metabolic engineering as well as for construction of nongenetically modified xylose-fermenting strains.  相似文献   

20.
水稻(Oryza sativa)是全世界重要的经济作物之一, 稻田镉(Cd)污染和镉积累问题严重威胁世界水稻的产量和品质以及人类健康, 如何降低水稻中镉积累已成为热点问题。以籼稻品种华占(HZ)为父本、粳稻品种热研2号(Nekken2)为母本, 连续自交多代后得到120个重组自交系群体, 对其镉积累进行检测和分析, 同时利用遗传图谱进行QTL作图。结果共检测到7个QTLs, 分别位于水稻第2、3、9和12号染色体上, 其中1个LOD值高达4.97。对这些QTL区间内与耐金属离子胁迫相关的候选基因进行定量分析, 发现LOC_Os02g50240LOC_Os02g52780LOC_Os09g31200LOC_Os09g35030LOC_Os09g37949这5个基因在双亲间的表达量差异显著, 结合亲本对不同金属离子的浓度积累数据, 推测LOC_ Os02g50240LOC_Os09g31200LOC_Os09g35030的高表达可能极大地提高了水稻对镉离子的吸收和胁迫耐受能力。通过QTL挖掘和分析, 发现这些基因与水稻籽粒的镉积累有关, 可能影响水稻耐镉胁迫的能力。研究结果为进一步筛选和培育耐镉胁迫的水稻品种创造了条件, 为阐明水稻镉积累的分子调控机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号