首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In most non-photosynthetic eukaryotes it has been demonstrated a conserved signal transduction pathway, namely TOR-S6K, that coordinates growth and cell proliferation. This pathway targets the translational apparatus to induce selective translation of ribosomal mRNAs as well as stimulate the cell cycle transition through the G1/S phase. Thus, by activation of this pathway through environmental signals, nutrients, stress, or specific growth factors, such as insulin or insulin-like growth factors (IGF), this pathway allows organisms to regulate growth and cell division. In plants, evidence has shown that TOR protein has been highly conserved through evolution, being involved in growth and cell proliferation control as well. Particularly in maize, a peptide named ZmIGF has been found in actively growing tissues. It targets the maize TOR pathway at the same extent as insulin and, by doing so it induces growth, as well as ribosomal proteins and DNA synthesis. Thus, higher metazoans and plants seem to conserve similar biochemical paths to regulate cell growth through equivalent targets that conduce to activation of the TOR-S6K pathway. Recent research shows evidence that supports this proposal by uncovering the ZmIGF receptor in maize, providing further means for analyzing the role of the conserved TOR signaling pathway in this plant.  相似文献   

4.
Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation.  相似文献   

5.
Body size in Drosophila larvae, like in other animals, is controlled by nutrition. Nutrient restriction leads to catabolic responses in the majority of tissues, but the Drosophila mitotic imaginal discs continue growing. The nature of these differential control mechanisms that spare distinct tissues from starvation are poorly understood. Here, we reveal that the Ret-like receptor tyrosine kinase (RTK), Stitcher (Stit), is required for cell growth and proliferation through the PI3K-I/TORC1 pathway in the Drosophila wing disc. Both Stit and insulin receptor (InR) signaling activate PI3K-I and drive cellular proliferation and tissue growth. However, whereas optimal growth requires signaling from both InR and Stit, catabolic changes manifested by autophagy only occur when both signaling pathways are compromised. The combined activities of Stit and InR in ectodermal epithelial tissues provide an RTK-mediated, two-tiered reaction threshold to varying nutritional conditions that promote epithelial organ growth even at low levels of InR signaling.  相似文献   

6.
The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.  相似文献   

7.
8.
9.
10.
The coordination of animal growth and development requires adequate nutrients. During times of insufficient food, developmental progression is slowed and stored energy is utilized to ensure that cell and tissue survival are maintained. Here, we report our finding that the Gbb/BMP signaling pathway, known to play an important role in many developmental processes in both vertebrates and invertebrates, is critical in the Drosophila larval fat body for regulating energy homeostasis. Animals with mutations in the Drosophila BMP-5,7 orthologue, glass bottom boat (gbb), or in its signaling components, display phenotypes similar to nutrient-deprived and Tor mutant larvae. These phenotypes include a developmental delay with reduced overall growth, a transparent appearance, and altered total lipid, glucose and trehalose levels. We find that Gbb/BMP signaling is required in the larval fat body for maintaining proper metabolism, yet interestingly, following nutrient deprivation larvae in turn show a loss of BMP signaling in fat body cells indicating that Gbb/BMP signaling is a central player in homeostasis. Finally, despite strong phenotypic similarities between nutrient-compromised animals and gbb mutants, distinct differences are observed in the expression of a group of starvation responsive genes. Overall, our results implicate Gbb/BMP signaling as a new pathway critical for positive regulation of nutrient storage and energy homeostasis during development.  相似文献   

11.
The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it’s functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila.  相似文献   

12.
Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor β) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.  相似文献   

13.
The ability of organisms to sense their nutritional environment and adjust their behavior accordingly is critical for survival. Insulin-like peptides (ilps) play major roles in controlling behavior and metabolism; however, the tissues and cells that insulin acts on to regulate these processes are not fully understood. In the fruit fly, Drosophila melanogaster, insulin signaling has been shown to function in the fat body to regulate lipid storage, but whether ilps act on the fly brain to regulate nutrient storage is not known. In this study, we manipulate insulin signaling in defined populations of neurons in Drosophila and measure glycogen and triglyceride storage. Expressing a constitutively active form of the insulin receptor (dInR) in the insulin-producing cells had no effect on glycogen or triglyceride levels. However, activating insulin signaling in the Drosulfakinin (Dsk)-producing neurons led to triglyceride accumulation and increased food consumption. The expression of ilp2, ilp3 and ilp5 was increased in flies with activated insulin signaling in the Dsk neurons, which along with the feeding phenotype, may cause the triglyceride storage phenotypes observed in these flies. In addition, expressing a constitutively active dInR in Dsk neurons resulted in decreased sleep in the fed state and less starvation-induced sleep suppression suggesting a role for insulin signaling in regulating nutrient-responsive behaviors. Together, these data support a role for insulin signaling in the Dsk-producing neurons for regulating behavior and maintaining metabolic homeostasis.  相似文献   

14.
Hypecoum leptocarpum is a traditional Tibetan Medicine, which has been shown to have anti-cancer properties. Therefore, developing anti-cancer activity compounds from Hypecoum leptocarpum is very valuable. Notably, corydamine, an isoquinoline alkaloid, is isolated from Hypecoum leptocarpum. Given the anti-cancer value of Hypecoum leptocarpum, lucubrating the anti-cancer activity of corydamine is of great value in the development of novel anti-cancer drugs. In this study, synthesis and anti-cancer activity evaluation of corydamine were completed. The research in vitro confirmed corydamine suppressed cell proliferation and metastasis, arrested cell cycle at G1/G0 phase, triggered mitochondrial pathway apoptosis through inhibiting the activation of PI3K/AKT/mTOR pathway. Studies in vivo on LM9 xenograft nude mice demonstrated that corydamine therapy markedly inhibited tumor growth. These findings revealed corydamine might be a candidate for the treatment of hepatocellular carcinoma.  相似文献   

15.
《遗传学报》2022,49(4):364-376
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models. In both mouse models, the diabetic phenotypes, including hyperglycemia, impaired glucose tolerance, and insulin sensitivity, were ameliorated after two or four weeks of intraperitoneal administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist ten days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro. Furthermore, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.  相似文献   

16.
NOG1 is a nucleolar GTPase that is critical for 60S ribosome biogenesis. Recently, NOG1 was identified as one of the downstream regulators of target of rapamycin (TOR) in yeast. It is reported that TOR is involved in regulating lifespan and fat storage in Caenorhabditis elegans. Here, we show that the nog1 ortholog (T07A9.9: nog-1) in C. elegans regulates growth, development, lifespan, and fat metabolism. A green fluorescence protein (GFP) promoter assay revealed ubiquitous expression of C. elegans nog-1 from the early embryonic to the adult stage. Furthermore, the GFP-tagged NOG-1 protein is localized to the nucleus, whereas the aberrant NOG-1 protein is concentrated in the nucleolus. Functional studies of NOG-1 in C. elegans further revealed that nog-1 knockdown resulted in smaller broodsize, slower growth, increased life span, and more fat storage. Moreover, nog-1 over-expression resulted in decreased life span. Taken together, our data suggest that nog-1 in C. elegans may be an important player in regulating life span and fat storage via the insulin/IGF pathway.  相似文献   

17.
Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.  相似文献   

18.
Insulin/insulin-like growth factor signaling (IIS) plays a pivotal role in the regulation of growth at the cellular and the organismal level during animal development. Flies with impaired IIS are developmentally delayed and small due to fewer and smaller cells. In the search for new growth-promoting genes, we identified mutations in the gene encoding Lnk, the single fly member of the SH2B family of adaptor molecules. Flies lacking lnk function are viable but severely reduced in size. Furthermore, lnk mutants display phenotypes reminiscent of reduced IIS, such as developmental delay, female sterility, and accumulation of lipids. Genetic epistasis analysis places lnk downstream of the insulin receptor (InR) and upstream of phosphoinositide 3-kinase (PI3K) in the IIS cascade, at the same level as chico (encoding the single fly insulin receptor substrate [IRS] homolog). Both chico and lnk mutant larvae display a similar reduction in IIS activity as judged by the localization of a PIP3 reporter and the phosphorylation of protein kinase B (PKB). Furthermore, chico; lnk double mutants are synthetically lethal, suggesting that Chico and Lnk fulfill independent but partially redundant functions in the activation of PI3K upon InR stimulation.  相似文献   

19.
The storage of lipids is an evolutionarily conserved process that is important for the survival of organisms during shifts in nutrient availability. Triglycerides are stored in lipid droplets, but the mechanisms of how lipids are stored in these structures are poorly understood. Previous in vitro RNAi screens have implicated several components of the spliceosome in controlling lipid droplet formation and storage, but the in vivo relevance of these phenotypes is unclear. In this study, we identify specific members of the splicing machinery that are necessary for normal triglyceride storage in the Drosophila fat body. Decreasing the expression of the splicing factors U1-70K, U2AF38, U2AF50 in the fat body resulted in decreased triglyceride levels. Interestingly, while decreasing the SR protein 9G8 in the larval fat body yielded a similar triglyceride phenotype, its knockdown in the adult fat body resulted in a substantial increase in lipid stores. This increase in fat storage is due in part to altered splicing of the gene for the β-oxidation enzyme CPT1, producing an isoform with less enzymatic activity. Together, these data indicate a role for mRNA splicing in regulating lipid storage in Drosophila and provide a link between the regulation of gene expression and lipid homeostasis.  相似文献   

20.
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号