首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Synthesis of the p53 tumor suppressor and its subsequent activation following DNA damage are critical for its protection against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) at the 5′ untranslated region of the p53 mRNA. However, the connection between IRES-mediated p53 translation and p53''s tumor suppressive function is unknown. In this study, we identified two p53 IRES trans-acting factors, translational control protein 80 (TCP80), and RNA helicase A (RHA), which positively regulate p53 IRES activity. Overexpression of TCP80 and RHA also leads to increased expression and synthesis of p53. Furthermore, we discovered two breast cancer cell lines that retain wild-type p53 but exhibit defective p53 induction and synthesis following DNA damage. The levels of TCP80 and RHA are extremely low in both cell lines, and expression of both proteins is required to significantly increase the p53 IRES activity in these cells. Moreover, we found cancer cells transfected with a shRNA against TCP80 not only exhibit decreased expression of TCP80 and RHA but also display defective p53 induction and diminished ability to induce senescence following DNA damage. Therefore, our findings reveal a novel mechanism of p53 inactivation that links deregulation of IRES-mediated p53 translation with tumorigenesis.  相似文献   

3.
4.
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic growth factor that promotes compensatory angiogenesis in circumstances of oxygen shortage. The requirement for translational regulation of VEGF is imposed by the cumbersome structure of the 5′ untranslated region (5′UTR), which is incompatible with efficient translation by ribosomal scanning, and by the physiologic requirement for maximal VEGF production under conditions of hypoxia, where overall protein synthesis is compromised. Using bicistronic reporter gene constructs, we show that the 1,014-bp 5′UTR of VEGF contains a functional internal ribosome entry site (IRES). Efficient cap-independent translation is maintained under hypoxia, thereby securing efficient production of VEGF even under unfavorable stress conditions. To identify sequences within the 5′UTR required for maximal IRES activity, deletion mutants were analyzed. Elimination of the majority (851 nucleotides) of internal 5′UTR sequences not only maintained full IRES activity but also generated a significantly more potent IRES. Activity of the 163-bp long “improved” IRES element was abrogated, however, following substitution of a few bases near the 5′ terminus as well as substitutions close to the translation start codon. Both the full-length 5′UTR and its truncated version function as translational enhancers in the context of a monocistronic mRNA.  相似文献   

5.
Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5′ untranslated region (5′ UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5′ UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl2, up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5′ UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed.  相似文献   

6.
7.
The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5’-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein). 2′-OMe modified antisense oligomers hybridizing to the 5''-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers’ binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors.  相似文献   

8.
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5′-untranslated region (5′-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5′-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5′-UTR and 3′-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5′-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.  相似文献   

9.
10.
The development of gene delivery systems for therapeutic use involves vectors (often retrovirus or adenovirus) which typically encode one target protein, but the use of internal ribosome entry sites (IRES) can confer the ability to express more than one protein from bi- or polycistronic mRNAs. IRES elements can display tissue-specific expression, so it is necessary to determine suitable IRES for specific clinical applicability. Blood vessel endothelial cells are important clinically since many different conditions involve neo-vascularisation (angiogenesis). We have demonstrated that the viral hepatitis C IRES element is a powerful mediator of protein synthesis in angiogenesis, such as found in solid tumours. Homologous recombination was used to introduce IRES-lacZ sequences into the Lmo2 gene, which is expressed in endothelial cells. β-Galactosidase expression was determined during vascular remodelling in mouse embryos and in sprouting endothelium during growth of solid tumours, and showed that the hepatitis C IRES is used efficiently for protein synthesis in endothelial cells. This IRES element can provide the means to express two or more therapeutic genes in blood vessel endothelium in clinical conditions, such as cancer, which depend on angiogenesis.  相似文献   

11.
Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5'' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek’s disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5'' end of the message and that is, from the affinity binding data, still compatible with the formation of ‘closed loop’ structure of mRNA.  相似文献   

12.
Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays vital roles in many physiologic processes including embryonic development. Aberrant expression of FGF9 causes human diseases and thus it highlights the importance of controlling FGF9 expression; however, the mechanism responsible for regulation of FGF9 expression is largely unknown. Here, we show the crucial role of an AU-rich element (ARE) in FGF9 3′-untranslated region (UTR) on controlling FGF9 expression. Our data demonstrated that AUF1 binds to this ARE to regulate FGF9 mRNA stability. Overexpression of each isoform of AUF1 (p37, p40, p42 and p45) showed that only the p42 isoform reduced the steady-state FGF9 mRNA. Also, knockdown of p42AUF1 prolonged the half-life of FGF9 mRNA. The induction of FGF9 mRNA in prostaglandin (PG) E2-treated human endometrial stromal cells was accompanied with declined cytoplasmic AUF1. Nevertheless, ablation of AUF1 led to sustained elevation of FGF9 expression in these cells. Our study demonstrated that p42AUF1 regulates both steady-state and PGE2-induced FGF9 mRNA stability through ARE-mediated mRNA degradation. Since almost half of the FGF family members are ARE-containing genes, our findings also suggest that ARE-mediated mRNA decay is a common pathway to control FGFs expression, and it represents a novel RNA regulon to coordinate FGFs homeostasis in various physiological conditions.  相似文献   

13.
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1α protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5′-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1α IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1α IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1α IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1α IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1α IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1α IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1α when oxygen supply is limited.  相似文献   

14.
15.
16.
17.
X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5′ untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5′ UTRs. We further show that the dominant, shorter, 5′ UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5′ UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation.  相似文献   

18.
It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.  相似文献   

19.
Initiation of protein synthesis on the hepatitis C virus (HCV) mRNA involves a structured element corresponding to the 5′ untranslated region and constituting an internal ribosome entry site (IRES). The domain IIId of the HCV IRES, an imperfect RNA hairpin extending from nucleotides 253 to 279 of the viral mRNA, has been shown to be essential for translation and for the binding of the 40S ribosomal subunit. We investigated the properties of a series of antisense 2′-O-methyloligoribonucleotides targeted to various portions of the domain IIId. Several oligomers, 14–17 nt in length, selectively inhibited in vitro translation of a bicistronic RNA construct in rabbit reticulocyte lysate with IC50s <10 nM. The effect was restricted to the second cistron (the Renilla luciferase) located downstream of the HCV IRES; no effect was observed on the expression of the first cistron (the firefly luciferase) which was translated in a cap-dependent manner. Moreover, antisense 2′-O-methyloligoribonucleotides specifically competed with the 40S ribosomal subunit for binding to the IRES RNA in a filter- retention assay. The antisense efficiency of the oligonucleotides was nicely correlated to their affinity for the IIId subdomain and to their ability to displace 40S ribosomal subunit, making this process a likely explanation for in vitro inhibition of HCV-IRES-dependent translation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号