首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.  相似文献   

2.
Barrier-to-autointegration factor (BAF) is an essential, highly conserved, metazoan protein. BAF interacts with LEM (LAP2, emerin, MAN1) domain-carrying proteins of the inner nuclear membrane. We analyzed the in vivo function of BAF in Caenorhabditis elegans embryos using both RNA interference and a temperature-sensitive baf-1 gene mutation and found that BAF is directly involved in nuclear envelope (NE) formation. NE defects were observed independent of and before the chromatin organization phenotype previously reported in BAF-depleted worms and flies. We identified vaccinia-related kinase (VRK) as a regulator of BAF phosphorylation and localization. VRK localizes both to the NE and chromatin in a cell-cycle-dependent manner. Depletion of VRK results in several mitotic defects, including impaired NE formation and BAF delocalization. We propose that phosphorylation of BAF by VRK plays an essential regulatory role in the association of BAF with chromatin and nuclear membrane proteins during NE formation.  相似文献   

3.
The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family whose members are characterized by homology to the vaccinia virus B1 kinase. The VRK orthologues encoded by Caenorhabditis elegans and Drosophila melanogaster play an essential role in cell division; however, substrates that mediate this role have yet to be elucidated. VRK1 can complement the temperature sensitivity of a vaccinia B1 mutant, implying that VRK1 and B1 have overlapping substrate specificity. Herein, we demonstrate that B1, VRK1, and VRK2 efficiently phosphorylate the extreme N' terminus of the BAF protein (Barrier to Autointegration Factor). BAF binds to both DNA and LEM domain-containing proteins of the inner nuclear membrane; in lower eukaryotes, BAF has been shown to play an important role during the reassembly of the nuclear envelope at the end of mitosis. We demonstrate that phosphorylation of ser4 and/or thr2/thr3 abrogates the interaction of BAF with DNA and reduces its interaction with the LEM domain. Coexpression of VRK1 and GFP-BAF greatly diminishes the association of BAF with the nuclear chromatin/matrix and leads to its dispersal throughout the cell. Cumulatively, our data suggest that the VRKs may modulate the association of BAF with nuclear components and hence play a role in maintaining appropriate nuclear architecture.  相似文献   

4.
Barrier-to-autointegration factor (BAF or BANF1) is highly conserved in multicellular eukaryotes and was first identified for its role in retroviral DNA integration. Homozygous BAF mutants are lethal and depletion of BAF results in defects in chromatin segregation during mitosis and subsequent nuclear envelope assembly. BAF exists both in phosphorylated and unphosphorylated forms with phosphorylation sites Thr-2, Thr-3, and Ser-4, near the N terminus. Vaccinia-related kinase 1 is the major kinase responsible for phosphorylation of BAF. We have identified the major phosphatase responsible for dephosphorylation of Ser-4 to be protein phosphatase 4 catalytic subunit. By examining the cellular distribution of phosphorylated BAF (pBAF) and total BAF (tBAF) through the cell cycle, we found that pBAF is associated with the core region of telophase chromosomes. Depletion of BAF or perturbing its phosphorylation state results not only in nuclear envelope defects, including mislocalization of LEM domain proteins and extensive invaginations into the nuclear interior, but also impaired cell cycle progression. This phenotype is strikingly similar to that seen in cells from patients with progeroid syndrome resulting from a point mutation in BAF.  相似文献   

5.
Retroviral integration is executed by the preintegration complex (PIC), which contains viral DNA together with a number of proteins. Barrier-to-autointegration factor (BAF), a cellular component of Moloney murine leukemia virus (MMLV) PICs, has been demonstrated to protect viral DNA from autointegration and stimulate the intermolecular integration activity of the PIC by its DNA binding activity. Recent studies reveal that the functions of BAF are regulated by phosphorylation via a family of cellular serine/threonine kinases called vaccinia-related kinases (VRK), and VRK-mediated phosphorylation causes a loss of the DNA binding activity of BAF. These results raise the possibility that BAF phosphorylation may influence the integration activities of the PIC through removal of BAF from viral DNA. In the present study, we report that VRK1 was able to abolish the intermolecular integration activity of MMLV PICs in vitro. This was accompanied by an enhancement of autointegration activity and dissociation of BAF from the PICs. In addition, in vitro phosphorylation of BAF by VRK1 abrogated the activity of BAF in PIC function. Among the VRK family members, VRK1 as well as VRK2, which catalyze hyperphosphorylation of BAF, could abolish PIC function. We also found that treatment of PICs with certain nucleotides such as ATP resulted in the inhibition of the intermolecular integration activity of PICs through the dissociation of BAF. More importantly, the ATP-induced disruption was not observed with the PICs from VRK1 knockdown cells. Our in vitro results therefore suggest the presence of cellular kinases including VRKs that can inactivate the retroviral integration complex via BAF phosphorylation.  相似文献   

6.
7.
Cell division, in addition to an accurate transmission of genetic information to daughter cells, also requires the temporal and spatial coordination of several biological processes without which cell division would not be feasible. These processes include the temporal coordination of DNA replication and chromosome segregation, regulation of nuclear envelope disassembly and assembly, chromatin condensation and Golgi fragmentation for its redistribution into daughter cells, among others. However, little is known regarding regulatory proteins and signalling pathways that might participate in the coordination of all these different biological functions. Such regulatory players should directly have a role in the processes leading to cell division. VRK1 (Vaccinia-related kinase 1) is an early response gene required for cyclin D1 expression, regulates p53 by a specific Thr18 phosphorylation, controls chromatin condensation by histone phosphorylation, nuclear envelope assembly by phosphorylation of BANF1, and participates in signalling required for Golgi fragmentation late in the G2 phase. We propose that VRK1, a Ser-Thr kinase, might be a candidate to play an important coordinator role in these cell division processes as part of a novel signalling pathway.  相似文献   

8.
The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.  相似文献   

9.
The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran.  相似文献   

10.
Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.  相似文献   

11.
12.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

13.
In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.  相似文献   

14.
In the fission yeast Schizosaccharomyces pombe, the centromeres of each chromosome are clustered together and attached to the nuclear envelope near the site of the spindle pole body during interphase. The mechanism and functional importance of this arrangement of chromosomes are poorly understood. In this paper, we identified a novel nuclear protein, Csi1, that localized to the site of centromere attachment and interacted with both the inner nuclear envelope SUN domain protein Sad1 and centromeres. Both Csi1 and Sad1 mutants exhibited centromere clustering defects in a high percentage of cells. Csi1 mutants also displayed a high rate of chromosome loss during mitosis, significant mitotic delays, and sensitivity to perturbations in microtubule–kinetochore interactions and chromosome numbers. These studies thus define a molecular link between the centromere and nuclear envelope that is responsible for centromere clustering.  相似文献   

15.
The nuclear envelope (NE) provides a selective barrier between the nuclear interior and the cytoplasm and constitutes a central component of intracellular architecture. During mitosis in metazoa, the NE breaks down leading to the complete mixing of the nuclear content with the cytosol. Interestingly, many NE components actively participate in mitotic progression. After chromosome segregation, the NE is reassembled around decondensing chromatin and the nuclear compartment is reestablished in the daughter cells. Here, we summarize recent progress in deciphering the molecular mechanisms underlying NE dynamics during cell division.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe undergoes “closed” mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies (SPBs) in the NE at the onset of mitosis and modulates distribution of the nuclear pore complexes (NPCs) during mitotic NE expansion. Structural features that drive partitioning of Tts1 to the high-curvature ER domains are crucial for both aspects of its function. An amphipathic helix located at the C-terminus of Tts1 is important for ER shaping and modulating the mitotic NPC distribution. Of interest, the evolutionarily conserved residues at the luminal interface of the third transmembrane region function specifically in promoting SPB-NE insertion. Our data illuminate cellular requirements for remodeling the NE during “closed” nuclear division and provide insight into the structure and functions of the eukaryotic TMEM33 family.  相似文献   

17.
As cells transition from interphase to mitosis, the microtubule cytoskeleton is reorganized to form the mitotic spindle. In the closed mitosis of fission yeast, a microtubule-associated protein complex, Alp7–Alp14 (transforming acidic coiled-coil–tumor overexpressed gene), enters the nucleus upon mitotic entry and promotes spindle formation. However, how the complex is controlled to accumulate in the nucleus only during mitosis remains elusive. Here we demonstrate that Alp7–Alp14 is excluded from the nucleus during interphase using the nuclear export signal in Alp14 but is accumulated in the nucleus during mitosis through phosphorylation of Alp7 by the cyclin-dependent kinase (CDK). Five phosphorylation sites reside around the nuclear localization signal of Alp7, and the phosphodeficient alp7-5A mutant fails to accumulate in the nucleus during mitosis and exhibits partial spindle defects. Thus our results reveal one way that CDK regulates spindle assembly at mitotic entry: CDK phosphorylates the Alp7–Alp14 complex to localize it to the nucleus.  相似文献   

18.
Accurate and efficient separation of sister chromatids during anaphase is critical for faithful cell division. It has been proposed that cortical dynein–generated pulling forces on astral microtubules contribute to anaphase spindle elongation and chromosome separation. In mammalian cells, however, definitive evidence for the involvement of cortical dynein in chromosome separation is missing. It is believed that dynein is recruited and anchored at the cell cortex during mitosis by the α subunit of heterotrimeric G protein (Gα)/mammalian homologue of Drosophila Partner of Inscuteable/nuclear mitotic apparatus (NuMA) ternary complex. Here we uncover a Gα/LGN-independent lipid- and membrane-binding domain at the C-terminus of NuMA. We show that the membrane binding of NuMA is cell cycle regulated—it is inhibited during prophase and metaphase by cyclin-dependent kinase 1 (CDK1)–mediated phosphorylation and only occurs after anaphase onset when CDK1 activity is down-regulated. Further studies indicate that cell cycle–regulated membrane association of NuMA underlies anaphase-specific enhancement of cortical NuMA and dynein. By replacing endogenous NuMA with membrane-binding-deficient NuMA, we can specifically reduce the cortical accumulation of NuMA and dynein during anaphase and demonstrate that cortical NuMA and dynein contribute to efficient chromosome separation in mammalian cells.  相似文献   

19.
Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.  相似文献   

20.
The spindle checkpoint delays exit from mitosis in cells with spindle defects. In this paper, we show that Chk2 is required to delay anaphase onset when microtubules are completely depolymerized but not in the presence of relatively few unattached kinetochores. Mitotic exit in Chk2-deficient cells correlates with reduced levels of Mps1 protein and increased Cdk1–tyrosine 15 inhibitory phosphorylation. Chk2 localizes to kinetochores and is also required for Aurora B–serine 331 phosphorylation in nocodazole or unperturbed early prometaphase. Serine 331 phosphorylation contributed to prometaphase accumulation in nocodazole after partial Mps1 inhibition and was required for spindle checkpoint establishment at the beginning of mitosis. In addition, expression of a phosphomimetic S331E mutant Aurora B rescued chromosome alignment or segregation in Chk2-deficient cells. We propose that Chk2 stabilizes Mps1 and phosphorylates Aurora B–serine 331 to prevent mitotic exit when most kinetochores are unattached. These results highlight mechanisms of an essential function of Chk2 in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号