首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
S100A4, a member of the S100 family of Ca2+-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4−/− mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4−/− mice display defects in chemotactic motility in vitro. S100A4−/− BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo.  相似文献   

2.
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fcγ receptor (FcγR)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated interference (short hairpin RNA [shRNA]) severely impaired the phagocytic capacity of RAW/LR5 macrophages, due to defects in phagocytic cup formation, actin assembly, and pseudopod extension. Addition of wiskostatin, a WASP/neural-WASP (N-WASP) inhibitor showed extensive inhibition of phagocytosis, actin assembly, and cell extension identical to the phenotype seen upon reduction of Cdc42 expression. However, using WASP-deficient bone marrow-derived macrophages or shRNA of WASP or N-WASP indicated a requirement for both WASP and N-WASP in phagocytosis. Cdc42 was necessary for WASP/N-WASP activation, as determined using a conformation-sensitive antibody against WASP/N-WASP and partial restoration of phagocytosis in Cdc42 reduced cells by expression of a constitutively activated WASP. In addition, Cdc42 was required for proper WASP tyrosine phosphorylation, which was also necessary for phagocytosis. These results indicate that Cdc42 is essential for the activation of WASP and N-WASP, leading to actin assembly and phagocytic cup formation by macrophages during FcγR-mediated phagocytosis.  相似文献   

3.
In this study we investigated the role of Bruton''s tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk −/− BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk −/− BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk −/− BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk −/− mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk −/− mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection.  相似文献   

4.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

5.
The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA- mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2−/− mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44−/− mice had similar responses to SPA, whereas those from RHAMM−/− mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.  相似文献   

6.
The mechanisms by which interleukin-6 (IL-6) family cytokines, which utilize the common receptor signaling subunit gp130, influence monocyte/macrophage development remain unclear. Here we have utilized macrophages devoid of either gp130-dependent STAT1/3 (gp130ΔSTAT/ΔSTAT) or extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinase (gp130Y757F/Y757F) activation to assess the individual contribution of each pathway to macrophage formation. While the inhibition by IL-6 of macrophage colony-stimulating factor (M-CSF)-induced colony formation observed in gp130wt/wt mice was abolished in gp130ΔSTAT/ΔSTAT mice, inhibition of macrophage colony formation was enhanced in gp130Y757F/Y757F mice. In gp130ΔSTAT/ΔSTAT bone marrow-derived macrophages (BMMs), both IL-6- and M-CSF-induced ERK1/2 tyrosine phosphorylation was enhanced. By contrast, tyrosine phosphorylation of ERK1/2 in response to M-CSF was reduced in gp130Y757F/Y757F BMMs, and the pattern of ERK1/2 activation in gp130 mutant BMMs correlated with their opposing responsiveness to M-CSF-induced proliferation. When compared to the level of expression in gp130wt/wt BMMs, c-fms expression was elevated in gp130ΔSTAT/ΔSTAT BMMs but reduced in gp130Y757F/Y757F BMMs. Finally, an ERK1/2 inhibitor suppressed M-CSF-induced BMM proliferation, and this result corresponded to a reduction in c-fms expression. Collectively, these results provide a functional and causal correlation between gp130-dependent ERK MAP kinase signaling and c-fms gene activation, a finding that provides a potential mechanism underlying the inhibition of M-CSF-dependent macrophage development by IL-6 family cytokines in mice.  相似文献   

7.
8.
Wiskott–Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPRS339Y, WASPRP373S) or together (WASPRSP/YS) did not rescue the chemotaxis defect or membrane projection defect of JurkatWKD T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP–WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPRS339Y but not WASPRP373S or WASPRSP/YS rescued the IL-2 expression defect of JurkatWKD T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASPP373S mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.  相似文献   

9.
Although Nlrp3 inflammasome activation in macrophages has been shown to be critical for the development of atherosclerosis upon atherogenic stimuli, it remains unknown whether activated Nlrp3 inflammasomes by other non-atherogenic stimuli induce alterations in macrophages that may contribute in the concert with other factors to atherogenesis. Thus, the present study tested the hypothesis that activation of Nlrp3 inflammasomes by ATP, which is a classical non-lipid danger stimulus, enhances the migration of macrophage and increases lipids deposition in macrophages accelerating foam cell formation. We first demonstrated that extracellular ATP (2.5 mM) markedly increased the formation and activation of Nlrp3 inflammasomes in bone marrow macrophages (BMMs) from wild type (Asc+/+) mice resulting in activation of caspase-1 and IL-1β production. In these Asc+/+ macrophages, such stimulation of inflammasomes by non-lipid ATP was similar to those induced by atherogenic stimuli such as cholesterol crystals or 7-ketocholesterol. Both non-lipid and lipid forms of stimuli induced formation and activation of Nlrp3 inflammasomes, which were prevented by Asc gene deletion. Interestingly, Asc+/+ BMMs had dramatic lipids accumulation after stimulation with ATP. Further, we demonstrated that large amount of cholesterol was accumulated in lysosomes of Asc+/+ BMMs when inflammasomes were activated by ATP. Such intracellular and lysosomal lipids deposition was not observed in Asc−/− BMMs and also prevented by caspase-1 inhibitor WEHD. In addition, in vitro and in vivo experiments revealed that migration of Asc+/+ BMMs increased due to stimulation of Nlrp3 inflammasomes, which was markedly attenuated in Asc−/− BMMs. Together, these results suggest that activation of Nlrp3 inflammasomes remarkably increases the susceptibility of macrophages to lipid deposition and their migration ability. Such novel action of inflammasomes may facilitate entry or retention of macrophages into the arterial wall, where they form foam cells and ultimately induce atherosclerosis.  相似文献   

10.

Background

Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding).

Results

We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASPRL46P and WASPRA47D (S1-WASP shRNA resistant) expressed well in JurkatWASP-KD T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of JurkatWASP-KD T cells towards SDF-1α. In addition JurkatWASP-KD T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASPRL46P and WASPRA47D) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α.

Conclusion

Thus our data suggest that missense mutations WASPRL46P or WASPRA47D affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.

Background

Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI.

Methods and Findings

Using a genetic model of tsp-1 −/− mice subjected to femoral artery excision, we report that tsp-1 −/− mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1 −/− and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1 −/− mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1 −/− mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1 −/− mice, thereby demonstrating that macrophages mediated tissue protection in these mice.

Conclusion

This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia.  相似文献   

13.
The cytoplasmic protein tyrosine kinase Syk has two amino-terminal SH2 domains that engage phosphorylated immunoreceptor tyrosine-based activation motifs in the signaling subunits of immunoreceptors. Syk, in conjunction with Src family kinases, has been implicated in immunoreceptor signaling in both lymphoid and myeloid cells. We have investigated the role of Syk in Fcγ receptor (FcγR)-dependent and -independent responses in bone marrow-derived macrophages and neutrophils by using mouse radiation chimeras reconstituted with fetal liver cells from Syk−/− embryos. Chimeric mice developed an abdominal hemorrhage starting 2 to 3 months after transplantation that was ultimately lethal. Syk-deficient neutrophils derived from the bone marrow were incapable of generating reactive oxygen intermediates in response to FcγR engagement but responded normally to tetradecanoyl phorbol acetate stimulation. Syk-deficient macrophages were defective in phagocytosis induced by FcγR but showed normal phagocytosis in response to complement. The tyrosine phosphorylation of multiple cellular polypeptides, including the FcγR γ chain, as well as Erk2 activation, was compromised in Syk−/− macrophages after FcγR stimulation. In contrast, the induction of nitric oxide synthase in macrophages stimulated with lipopolysaccharide and gamma interferon was not dependent on Syk. Surprisingly, Syk-deficient macrophages were impaired in the ability to survive or proliferate on plastic petri dishes. Taken together, these results suggest that Syk has specific physiological roles in signaling from FcγRs in neutrophils and macrophages and raise the possibility that in vivo, Syk is involved in signaling events other than those mediated by immunoreceptors.  相似文献   

14.
The multiple isoforms of p73, a member of the p53 family, share the ability to modulate p53 activities but also have unique properties, leading to a complex and poorly understood functional network. In vivo, p73 isoforms have been implicated in tumor suppression (TAp73−/− mice), DNA damage (ΔNp73−/− mice) and development (p73−/− mice). In this study, we investigated whether TAp73 contributes to innate immunity and septic shock. In response to a lethal lipopolysaccharide (LPS) challenge, TAp73−/− mice showed higher blood levels of proinflammatory cytokines and greater mortality than their wild-type littermates. In vitro, TAp73−/− macrophages exhibited elevated production of tumor necrosis factor alpha , interleukin-6 and macrophage inflammatory protein-2 as well as prolonged survival, decreased phagocytosis and increased major histocompatibility complex class II expression. Mice depleted of endogenous macrophages and reconstituted with TAp73−/− macrophages showed increased sensitivity to LPS challenge. These results suggest that macrophage polarization is altered in the absence of TAp73 such that maintenance of the M1 effector phenotype is prolonged at the expense of the M2 phenotype, thus impairing resolution of the inflammatory response. Our data indicate that TAp73 has a role in macrophage polarization and innate immunity, enhancing the action field of this important regulatory molecule.  相似文献   

15.
Virtually all of the elements of Mycobacterium tuberculosis (Mtb) pathogenesis, including pro-inflammatory cytokine production, granuloma formation, cachexia, and mortality, can be induced by its predominant cell wall glycolipid, trehalose 6,6′-dimycolate (TDM/cord factor). TDM mediates these potent inflammatory responses via interactions with macrophages both in vitro and in vivo in a myeloid differentiation factor 88 (MyD88)-dependent manner via phosphorylation of the mitogen activated protein kinases (MAPKs), implying involvement of toll-like receptors (TLRs). However, specific TLRs or binding receptors for TDM have yet to be identified. Herein, we demonstrate that the macrophage receptor with collagenous structure (MARCO), a class A scavenger receptor, is utilized preferentially to “tether” TDM to the macrophage and to activate the TLR2 signaling pathway. TDM-induced signaling, as measured by a nuclear factor-kappa B (NF-κB)-luciferase reporter assay, required MARCO in addition to TLR2 and CD14. MARCO was used preferentially over the highly homologous scavenger receptor class A (SRA), which required TLR2 and TLR4, as well as their respective accessory molecules, in order for a slight increase in NF-κB signaling to occur. Consistent with these observations, macrophages from MARCO−/− or MARCO−/−SRA−/− mice are defective in activation of extracellular signal-related kinase 1/2 (ERK1/2) and subsequent pro-inflammatory cytokine production in response to TDM. These results show that MARCO-expressing macrophages secrete pro-inflammatory cytokines in response to TDM by cooperation between MARCO and TLR2/CD14, whereas other macrophage subtypes (e.g. bone marrow–derived) may rely somewhat less effectively on SRA, TLR2/CD14, and TLR4/MD2. Macrophages from MARCO−/− mice also produce markedly lower levels of pro-inflammatory cytokines in response to infection with virulent Mtb. These observations identify the scavenger receptors as essential binding receptors for TDM, explain the differential response to TDM of various macrophage populations, which differ in their expression of the scavenger receptors, and identify MARCO as a novel component required for TLR signaling.  相似文献   

16.
Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease. We investigated the effect of ectopic macrophage apoAI expression on atherosclerosis and dermatitis induced by the combination of hypercholesterolemia and absence of HDL in mice. Hematopoietic progenitor cells were transduced to express human apoAI and transplanted into lethally irradiated LDL receptor−/−/apoAI−/− mice, which were then placed on a high-fat diet for 16 weeks. Macrophage apoAI expression reduced aortic CD4+ T-cell levels (−39.8%), lesion size (−25%), and necrotic core area (−31.6%), without affecting serum HDL or aortic macrophage levels. Macrophage apoAI reduced skin cholesterol by 39.8%, restored skin morphology, and reduced skin CD4+ T-cell levels. Macrophage apoAI also reduced CD4+ T-cell levels (−32.9%) in skin-draining lymph nodes but had no effect on other T cells, B cells, dendritic cells, or macrophages compared with control transplanted mice. Thus, macrophage apoAI expression protects against atherosclerosis and dermatitis by reducing cholesterol accumulation and regulating CD4+ T-cell levels, without affecting serum HDL or tissue macrophage levels.  相似文献   

17.
Phagocytosis is central to bacterial clearance, but the exact mechanism is incompletely understood. Here, we show a novel and critical role for lumican, the connective tissue extracellular matrix small leucine-rich repeat proteoglycan, in CD14-mediated bacterial phagocytosis. In Psuedomonas aeruginosa lung infections, lumican-deficient (Lum−/−) mice failed to clear the bacterium from lungs, tissues, and showed a dramatic increase in mortality. In vitro, phagocytosis of nonopsonized Gram-negative Escherichia coli and P. aeruginosa was inhibited in Lum−/− peritoneal macrophages (MΦs). Lumican co-localized with CD14, CD18, and bacteria on Lum+/+ MΦ surfaces. Using two different P. aeruginosa strains that require host CD14 (808) or CD18/CR3 (P1) for phagocytosis, we showed that lumican has a larger role in CD14-mediated phagocytosis. Recombinant lumican (rLum) restored phagocytosis in Lum−/− MΦs. Surface plasmon resonance showed specific binding of rLum to CD14 (KA = 2.15 × 106 m−1), whereas rLumY20A, and not rLumY21A, where a tyrosine in each was replaced with an alanine, showed 60-fold decreased binding. The rLumY20A variant also failed to restore phagocytosis in Lum−/− MΦs, indicating Tyr-20 to be functionally important. Thus, in addition to a structural role in connective tissues, lumican has a major protective role in Gram-negative bacterial infections, a novel function for small leucine-rich repeat proteoglycans.  相似文献   

18.
Increasing evidence suggests that CD45, a transmembrane protein tyrosine phosphatase, is an important modulator of macrophage activation. Microglia, resident brain macrophages, express CD45 and proliferate under pathologic conditions. In this study, we examined the role of CD45 in modulating GM-CSF-induced proliferation and signal transduction in primary human microglial cultures. Soluble, but not immobilized anti-CD45RO induced tyrosine phosphatase activity and inhibited GM-CSF-induced microglial proliferation. Microglial proliferation was also inhibited by PP2 (Src inhibitor), LY294002 (PI3K inhibitor), and U0126 (MEK inhibitor). GM-CSF induced phosphorylation of Jak2, Stat5, Hck (the myeloid-restricted Src kinase), Akt, Stat3, and Erk MAPKs in microglia. Of these, anti-CD45RO inhibited phosphorylation of Hck and Akt, and PP2 inhibited phosphorylation of Hck and Akt. In a macrophage cell line stably overexpressing wild-type or kinase-inactive Hck, GM-CSF increased proliferation of the control (empty vector) and wild-type but not kinase-inactive cells, and this was inhibited by anti-CD45RO. Together, these results demonstrate that, in macrophages, Hck tyrosine kinase is activated by GM-CSF, and that Hck plays a pivotal role in cell proliferation and survival by activating the PI3K/Akt pathway. Ab-mediated activation of macrophage and microglial CD45 tyrosine phosphatase may have therapeutic implications for CNS inflammatory diseases.  相似文献   

19.
Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages.  相似文献   

20.
Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF−/− C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF−/− macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF−/− exhibited reduced weight gain. Age and weight-matched obese MIF−/− mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF−/− stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF−/−adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF−/− macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF−/− liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号