共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The KlHEM13 gene of Kluyveromyces lactis encoding the coproporphyrinogen oxidase (EC 1.3.3.3), an oxygen-requiring enzyme that catalyzes the sixth step of heme biosynthesis, was cloned and functionally characterized. The coding and upstream regions of KlHEM13 were analyzed and the putative cis regulatory elements were discussed in relation to the mechanisms of regulation of this hypoxic gene in K. lactis. 相似文献
4.
克鲁维酵母种间原生质体融合的研究 总被引:5,自引:0,他引:5
乳酸克鲁维酵母(Kluyueromyces lactis Y12—1)和脆壁克鲁维酵母(K.fragilis8554)是乳糖酶生产菌株。应用原生质体融合技术进行了两菌株种问融合的研究。通过试验.原生质体形成及再生的最佳条件为:对数期的细胞,2%的蜗牛酶.30℃酶解30分钟.原生质体形成率90%以上,再生率20%左右。原生质体融合由聚乙二醇(PEG)诱导。K.lactisY12-l不能旋酵菊糖;K.fragilis 8554不能同化D-松三糖和麦芽糖;利用二菌株自身的营养缺陷性质获得融合子。融合子既能发酵菊糖又能同化D-松三糖和麦芽糖;融合子的DNA含量约为二亲株之和;融合子的菌落形态与亲株相比有一定差别.在以乳糖为碳源的培养基中,融合子的乳糖酶产量提高14一l6%;连续15次传代,融合子稳定。 相似文献
5.
Saccharomyces cerevisiae and Kluyveromyces lactis are considered to be the prototypes of two distinct metabolic models of facultatively-aerobic yeasts: Crabtree-positive/fermentative and Crabtree-negative/respiratory, respectively. Our group had previously proposed that one of the molecular keys supporting this difference lies in the mechanisms involved in the reoxidation of the NADPH produced as a consequence of the activity of the pentose phosphate pathway. It has been demonstrated that a significant part of this reoxidation is carried out in K. lactis by mitochondrial external alternative dehydrogenases which use NADPH, the enzymes of S. cerevisiae being NADH-specific. Moreover, the NADPH-dependent pathways of response to oxidative stress appear as a feasible alternative that might co-exist with direct mitochondrial reoxidation. 相似文献
6.
We have determined that lactose uptake in Kluyveromyces lactis is mediated by an inducible transport system. Induction, elicited by lactose or galactose, of the transporter required protein synthesis. Transport of lactose required an energy-generating system and occurred by an active process, since an intracellular lactose concentration 175 times greater than the extracellular concentration could be obtained. The Km for lactose transport was about 2.8 mM in uninduced and lactose- or galactose-induced cells. The lactose transporters in K. lactis and Escherichia coli appear to be different since they respond uniquely to inhibition by substrate analogs. 相似文献
7.
W. I. Golubev 《Microbiology》2013,82(1):77-84
New mycocinogenic strains of the yeast Kluyveromyces lactis were found. They have fungicidic activity at pH from 5 to 7. This activity was eliminated by UV irradiation. Among over 260 species tested, ones sensitive to these mycocins were revealed mainly in the families Saccharomycetaceae and Wickerhamomycetaceae of the order Saccharomycetales. 相似文献
8.
Manuel Snchez Francisco J. Iglesias Carlos Santamaría Angel Domínguez 《Applied microbiology》1993,59(7):2087-2092
The physical and biological parameters involved in efficient transformation of Kluyveromyces lactis by electroporation have been analyzed. By using an optimum voltage and a constant volume of cell suspension in a cuvette, the efficiency of transformation increased with increases in cell numbers and plasmid concentration. However, the most important parameter was the time of the pulse. Changes of 1 ms decreased the efficiency of transformation more than 70 to 80%. Under our best conditions, between 106 and 107 transformants per μg of plasmid DNA could be obtained. Under certain conditions, the size of the plasmid also affected electroporation efficiency. In any case, we did not obtain integrative transformation with an autonomously replicating plasmid. 相似文献
9.
Joris J. Heus Kerry S. Bloom Ben J. M. Zonneveld H. Yde Steensma Johan A. Van den Berg 《Chromosoma》1993,102(9):660-667
We have investigated the chromatin structure of Kluyveromyces lactis centromeres in isolated nuclei of K. lactis and Saccharomyces cerevisiae by using micrococcal nuclease and DNAse I digestion. The protected region found in K. lactis is approximately 270 bp long and encompasses the centromeric DNA elements, KlCDEI, KlCDEII, and KlCDEIII, but not KlCDE0. Halving KlCDEII to 82 bp impaired centromere function and led to a smaller protected structure (210 bp). Likewise, deletion of 5 bp from KlCDEI plus adjacent flanking sequences resulted in a smaller protected region and a decrease in centromere function. The chromatin structures of KlCEN2 and KlCEN4 present on plasmids were found to be similar to the structures of the corresponding centromeres in their chromosomal context. A different protection pattern of KlCEN2 was detected in S. cerevisiae, suggesting that KlCEN2 is not properly recognized by at least one of the centromere binding proteins of S. cerevisiae. The difference is mainly found at the KlCDEIII side of the structure. This suggests that one of the components of the ScCBF3-complex is not able to bind to KlCDEIII, which could explain the species specificity of K. lactis and S. cerevisiae centromeres. 相似文献
10.
Regulation of primary carbon metabolism in Kluyveromyces lactis 总被引:2,自引:0,他引:2
Breunig KD Bolotin-Fukuhara M Bianchi MM Bourgarel D Falcone C Ferrero I Frontali L Goffrini P Krijger JJ Mazzoni C Milkowski C Steensma HY Wésolowski-Louvel M Zeeman AM 《Enzyme and microbial technology》2000,26(9-10):771-780
In the recent past, through advances in development of genetic tools, the budding yeast Kluyveromyces lactis has become a model system for studies on molecular physiology of so-called “Nonconventional Yeasts.” The regulation of primary carbon metabolism in K. lactis differs markedly from Saccharomyces cerevisiae and reflects the dominance of respiration over fermentation typical for the majority of yeasts. The absence of aerobic ethanol formation in this class of yeasts represents a major advantage for the “cell factory” concept and large-scale production of heterologous proteins in K. lactis cells is being applied successfully. First insight into the molecular basis for the different regulatory strategies is beginning to emerge from comparative studies on S. cerevisiae and K. lactis. The absence of glucose repression of respiration, a high capacity of respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors determining physiological differences to S. cerevisiae. A striking discrepancy exists between the conservation of regulatory factors and the lack of evidence for their functional significance in K. lactis. On the other hand, structurally conserved factors were identified in K. lactis in a new regulatory context. It seems that different physiological responses result from modified interactions of similar molecular modules. 相似文献
11.
【目的】实现鼠灰链霉菌来源经密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母(Kluyveromyces lactis GG799)中组成型表达。【方法】以鼠灰链霉菌(Streptomyces murinus)来源的腺苷酸脱氨酶(AMP)基因经密码子优化后作为模板,设计特异性引物,PCR扩增AMP脱氨酶基因opt-AMPD,以p KLAC1为载体构建重组表达质粒p KLAC1-opt-AMPD,经Sac II线性化后电转化法转入K.lactis GG799,筛选得到重组菌株,测定酶活,经His TrapTM HP纯化后得到AMP脱氨酶,并优化重组菌的发酵培养基。【结果】对AMP脱氨酶基因进行了密码子优化后,构建了重组K.lactis GG799/p KLAC1-opt-AMPD,实现组成型表达,密码子优化后AMP脱氨酶酶活提高到586±50 U/m L。SDS-PAGE结果显示,纯化后的AMP脱氨酶为单一条带,蛋白大小约为60 k D。优化的发酵培养基为(g/L):葡萄糖40、蛋白胨20、酵母粉15、Na Cl 8、KCl 10、Mg SO4 2,30°C、200 r/min发酵120 h,酶活达到2 100±60 U/m L。【结论】实现了密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母GG799内的组成型表达,为实现腺苷酸脱氨酶的重组高效表达和发酵生产进行了有益探索。 相似文献
12.
Summary By employing pulsed field gel electrophoresis we find that slow growing strains of Kluyveromyces lactis have only 43%–55% of the wild-type level of ribosomal DNA (rDNA) repeats. When subjected to prolonged vegetative growth these strains can increase both the number of rDNA repeats and their growth rate. 相似文献
13.
以乳酸克鲁维酵母(Kluyveromyces lactis,K.lactis)GG799为宿主对人血清白蛋白(HSA)进行分泌表达。以pPIC9k-HSA为模板,采用带有XhoⅠ和NotⅠ酶切位点的引物PCR扩增获得HSA基因,经XhoⅠ和NotⅠ双酶切后插入pKLAC1,构建表达载体pKLAC1-HSA。经SalⅡ线性化后,电击转化K.lactis GG799,用含5 mmol/L乙酰胺的YCB平板筛选阳性转化子。提取基因组DNA,采用PCR方法对转化子鉴定后进行摇瓶发酵。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)及Western blot分析发酵上清液中的表达产物,并初步分析酵母基础N源(YNB)对HSA在K.lactis GG799中表达的影响。结果表明,HSA成功在K.lactis GG799中分泌表达,表达量为81μg/mL,遗传稳定性好。 相似文献
14.
Physiological studies of beta-galactosidase induction in Kluyveromyces lactis 总被引:17,自引:2,他引:17 下载免费PDF全文
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose. 相似文献
15.
16.
Properties of mitochondrial DNA from Kluyveromyces lactis 总被引:5,自引:0,他引:5
17.
A new methodology for the extraction of beta-galactosidase from the yeast Kluyveromyces lactis was obtained by electropulsation. The application of a series of electric pulses (2 ms duration, 1 Hz frequency, and 4-4.5 kV/cm field strength) to fresh cells suspended in deionized water, followed by incubation in PBS, led to a spontaneous slow release of enzyme at a yield of 75-80% without any further treatment. Most of the enzyme was extracted within 8 h after electropulsation. This release was dependent on the growth phase. The specific activity of beta-galactosidase in the supernatant of pulsed cells was higher by a factor of 1.5-1.7 in comparison with crude extract. 相似文献
18.
Coria R Kawasaki L Torres-Quiroz F Ongay-Larios L Sánchez-Paredes E Velázquez-Zavala N Navarro-Olmos R Rodríguez-González M Aguilar-Corachán R Coello G 《FEMS yeast research》2006,6(3):336-344
The mating pheromone response pathway in Saccharomyces cerevisiae is one of the best understood signalling pathways in eukaryotes. Comparison of this system with pathways in other fungal species has generated surprises and insights. Cloning and targetted disruption of genes encoding components of the pheromone response pathway has allowed the attribution of specific functions to these signal transduction components. In this review we describe current knowledge of the Kluyveromyces lactis mating system, and compare it with the well-understood S. cerevisiae pathway, emphasizing the similarities and differences in the heterotrimeric G protein activity. This mating pathway is controlled positively by both the Galpha and the Gbeta subunits of the heterotrimeric G protein. 相似文献
19.
González-Siso MI Freire-Picos MA Ramil E González-Domínguez M Rodríguez Torres A Cerdán ME 《Enzyme and microbial technology》2000,26(9-10):699-705
Yeasts do not form a homogeneous group as far as energy-yielding metabolism is concerned and the fate of pyruvate, a glycolytic intermediate, determines the type of energy metabolism. Kluyveromyces lactis has become an alternative to the traditional yeast Saccharomyces cerevisiae owing to its industrial applications as well as to studies on mitochondrial respiration. In this review we summarize the current knowdeledge about the K. lactis respirofermentative metabolism, taking into account the respiratory capacity of this yeast and the molecular mechanisms controlling its regulation, giving an up-to-date picture. 相似文献
20.
van Ooyen AJ Dekker P Huang M Olsthoorn MM Jacobs DI Colussi PA Taron CH 《FEMS yeast research》2006,6(3):381-392
Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression. 相似文献