首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

3.
The force output of the ankle dorsiflexors was studied during a 40-day simulated ascent of Mt. Everest in a hypobaric chamber; both electrically activated and maximal voluntary contractions (MVCs) were employed. The purpose of this study was to establish whether, under conditions of progressive chronic hypoxia, there was a decrease in muscle force output and/or increased fatigability. We also attempted to identify the main site of any failure, i.e., central nervous system, neuromuscular junction, or muscle fiber. Muscle twitch torque (Pt), tetanic torque (Po), MVC torque, and evoked muscle compound action potential (M wave) were monitored during 205-s exercise periods in five subjects at three simulated altitudes (760, 335, and 282 Torr). All three types of torque measurement were well preserved at the three altitudes. In some subjects, the responses to stimuli interpolated during repeated MVCs provided evidence of "central" fatigue at altitude. In addition, the rate of fatigue during 20-Hz electrical stimulation was greater (P less than 0.01) at altitude and there was increased fatigability of the twitch (P less than 0.025); however, the M wave amplitude was maintained. We conclude that central motor drive becomes more precarious at altitude and is associated with increased muscle fatigue at low excitation frequencies; the latter is the result, in part, of chronic hypoxia and occurs in the muscle fiber interior because no impairment in neuromuscular transmission could be demonstrated.  相似文献   

4.
To examine the effect of hypobaric hypoxia on plasma lipid profiles, fasting blood samples were collected from six men (21-31 yr) at 760 Torr and periodically during a 40-day exposure to decreasing barometric pressure culminating in a final ambient pressure of 282 Torr. Preascent plasma total cholesterol concentration ([TC]) was decreased by 25% after the 40-day exposure (P less than 0.01). High-density lipoprotein concentrations ([HDL-C]) decreased 32% (P less than 0.001) with no alteration in the TC-to-HDL-C weight ratio. Plasma triglyceride concentration increased twofold during this period (P less than 0.01). There were no significant differences in fasting plasma free fatty acid concentrations or free fatty acid-to-albumin molar ratio throughout the study. Fasting plasma insulin levels were increased approximately twofold with no significant changes in glucagon concentration or the insulin-to-glucagon molar ratio. Plasma norepinephrine concentrations were increased threefold on reaching 282 Torr (P less than 0.01), with no significant changes in plasma epinephrine concentrations. Mean energy intake (kcal/day) decreased 42%, whereas mean body weights decreased by 8.9 +/- 0.8% (P less than 0.01) with exposure. Increased concentrations of insulin may lead to increased hepatic production of triglyceride-rich lipoproteins, thus eliciting metabolic changes independent of weight loss and dietary intake.  相似文献   

5.
Alpine ecosystems are frequently characterized by an abundance of wing‐reduced insect species, but the drivers of this biodiversity remain poorly understood. Insect wing reduction in these environments has variously been attributed to altitude, temperature, isolation, habitat stability or decreased habitat size. We used fine‐scale ecotypic and genomic analyses, along with broad‐scale distributional analyses of ecotypes, to unravel the ecological drivers of wing reduction in the wing‐dimorphic stonefly Zelandoperla fenestrata complex. Altitudinal transects within populations revealed dramatic wing reduction over very fine spatial scales, tightly linked to the alpine treeline. Broad biogeographical analyses confirm that the treeline has a much stronger effect on these ecotype distributions than altitude per se. Molecular analyses revealed parallel genomic divergence between vestigial‐winged (high altitude) and full‐winged (low altitude) ecotypes across distinct streams. These data thus highlight the role of the alpine treeline as a key driver of rapid speciation, providing a new model for ecological diversification along exposure gradients.  相似文献   

6.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.  相似文献   

7.
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O2 diffusion capacity from the blood and reduce intracellular O2 diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O2 kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O2 supply to flight muscle.  相似文献   

8.
Birth censuses were conducted every 2 or 3 days for each of six groups of Macaca thibetana along trails at Mt. Emei in southwest China from March 7 to June 15, 1986. Based on direct observations and the timetable of forehead hair growth and behavior, each of 32 infants could be placed in one of sixteen 14-day periods of the 1986 birth season. The mean estimated birth date was March 27 (SD = 39 days); the median estimated birth date was March 14. Sex ratios in newborns and yearlings did not deviate significantly from 1:1. Seasonal birth timing was correlated with the altitude of the range (r = ?0.84, P < .05); that is, infants were born earlier in the season at higher altitudes.  相似文献   

9.
Recent studies demonstrated that the Painted Lady (Vanessa cardui), a cosmopolitan diurnal butterfly performs long-range migration between subtropical Africa and north-western Europe, covered by individuals belonging to up to six generations. Here we analyze temporal patterns of complete annual migratory activity of the Painted Lady in Hungary, located in its Central European migratory route, almost completely unstudied before. To do so, we used field occurrence data collected between 2000 and 2019 and estimated temporal patterns in migratory activity by fitting kernel density functions on the daily mean number of individuals and observation frequency. The temporal distributions of kernel density estimates were analyzed as a function of time and key climatic predictors of the study area. We found that (i) the timing of spring arrivals has been advancing; (ii) the relative intensity of the first and last migratory peaks of the Painted Lady significantly increased during the past decades; and (iii) intensity of the last migratory peak is related to the mean temperature of the previous month, inferring that the migration is shifting to earlier dates and their volume of the migration has substantially intensified, evoking mutually nonexclusive, competing hypotheses. Our study indicates the strengthening migration activities of a southerly distributed, long-distance migrant diurnal butterfly, most probably linked to the northward shift of wintering areas induced by warming trends of the southern parts of Europe. However, the complexity of the likely processes leading to changing migratory strategies calls up for further research in both breeding and wintering areas.  相似文献   

10.
Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight performance in both a laboratory drop–escape response and the more natural context of aerial predation. The laboratory experiment shows that hindwing area loss reduces vertical acceleration and average flight velocity, and the predation experiment demonstrates that this type of wing damage results in a significant decline in capture success. Taken together, these results suggest that wing damage may take a serious toll on wild dragonflies, potentially reducing both reproductive success and survival.  相似文献   

11.
Aims Forest growth and recruitment and their relationships to climate are complex. The aims of our study are (i) to examine the patterns in tree radial growth and recruitment along an altitudinal gradient in Mt. Everest region and (ii) to identify the climatic factors that are responsible to the observed patterns in tree growth and recruitment.Methods Four plots, each 30 × 60 m in size, were established from the lower to upper limits of the eastern Himalayan fir forest in Dingjie County of the Mt. Everest Nature Reserve, China. Dendrochronological techniques were applied to obtain information about the radial growth and age of the trees in the plots. Correlation analysis was used to identify the relationships between radial growth and recruitment of trees and climatic variables, i.e. monthly mean temperature and Palmer Drought Severity Index (PDSI). The population age structure was analyzed to investigate the recruitment history.Important findings The timberline plot was characterized by significant tree recruitments in the recent three decades and sporadic recruitments in earlier periods. The other three plots showed recruitment pulses during 1880–1910 in Plot 3?700 m, during 1870–80 and 1920–30 in Plot 3?520 m and during 1900–40 in Plot 3?410 m. The recruitment of fir trees in the timberline was sensitive to summer (June–September) temperatures, but it was mainly controlled by episodic disturbances in lower altitudes. Fir radial growth in the upper two plots was positively correlated with previous winter and current August temperature. Fir radial growth at the two lower plots was positively correlated with PDSI from previous September to current September.  相似文献   

12.
13.
This study employed differential proteomic and immunoassay techniques to elucidate the biochemical mechanisms utilized by human muscle (vastus lateralis) in response to high altitude hypoxia exposure. Two groups of subjects, participating in a medical research expedition (A, n = 5, 19d at 5300 m altitude; B, n = 6, 66d up to 8848 m) underwent a ≈ 30% drop of muscular creatine kinase and of glycolytic enzymes abundance. Protein abundance of most enzymes of the tricarboxylic acid cycle and oxidative phosphorylation was reduced both in A and, particularly, in B. Restriction of α‐ketoglutarate toward succinyl‐CoA resulted in increased prolyl hydroxylase 2 and glutamine synthetase. Both A and B were characterized by a reduction of elongation factor 2alpha, controlling protein translation, and by an increase of heat shock cognate 71 kDa protein involved in chaperone‐mediated autophagy. Increased protein levels of catalase and biliverdin reductase occurred in A alongside a decrement of voltage‐dependent anion channels 1 and 2 and of myosin‐binding protein C, suggesting damage to the sarcomeric structures. This study suggests that during acclimatization to hypobaric hypoxia the muscle behaves as a producer of substrates activating a metabolic reprogramming able to support anaplerotically the tricarboxylic acid cycle, to control protein translation, to prevent energy expenditure and to activate chaperone‐mediated autophagy.  相似文献   

14.
Consequences of predation may be particularly heavy on small populations of herbivores, especially if they are threatened with extinction. Over the 2006–2010 period, we documented the effects of the spontaneous return of the endangered snow leopard on the population of the vulnerable Himalayan tahr. The study area was an area of central Himalaya where this cat disappeared c. 40 years before, because of persecution by man. Snow leopards occurred mainly in areas close to the core area of tahr distribution. Tahr was the staple (56.3 %) of snow leopards. After the arrival of this cat, tahr decreased by more than 2/3 from 2003 to 2010 (mainly through predation on kids). Subsequently, the density of snow leopards decreased by 60 % from 2007 to 2010. The main prey of snow leopards in Asia (bharal, marmots) were absent in our study area, forcing snow leopards to specialize on tahr. The restoration of a complete prey spectrum should be favoured through reintroductions, to conserve large carnivores and to reduce exploitation of small populations of herbivores, especially if threatened.  相似文献   

15.
长白山高山冻原植物群落的数量分类和排序   总被引:4,自引:0,他引:4  
钱宏 《应用生态学报》1990,1(3):254-263
本文用目前在国际上比较先进的双向指示种分析(TWINSPAN)多元等级分划分类方法和无趋势对应分析(DCA)排序方法对长自山高山冻原植物群落进行了研究。研究结果表明:DCA的第2轴与长白山高山冻原59个植物群落类型的土壤水分梯度紧密相关, TWINSPAN将长白山高山冻原59个植物群落分为12组。此外, 本文还对长白山高山冻原植物群落的TWINSPAN和DCA分类结果与经典分类方法对其分类的结果进行了比较。  相似文献   

16.
Carex doenitzii on the upper timberline of Mt. Fuji were studied to determine the effect of thermal conditions on their seed germination and seedling growth. Mature seeds collected at the end of the growing season were divided into five test groups, and each was germinated at constant temperature, the temperatures being 15 C, 20 C, 25 C, 30 C and 35 C. Seed germination percentage was highest (93%) at 25 C. Seedlings germinated at 25 C were grown in chambers at 15/10 C, 25/20 C and 35/30 C. Growth of seedlings was greatest at 25/20 C. The data suggest that the seed germination and seedling growth ofC. doenitzii occur only under limited conditions in the field.  相似文献   

17.
The hovering flight of hummingbirds is one of the most energetically demanding forms of animal locomotion and is influenced by both atmospheric oxygen availability and air density. Montane Neotropical hummingbirds are expected to shift altitudinally upwards in response to climate change to track their ancestral climatic regime, which is predicted to influence their flight performance. In this study, we use the climate envelope approach to estimate upward elevational shifts for five Andean hummingbird species under two climate change scenarios. We then use field‐based data on hummingbird flight mechanics to estimate the resulting impact of climate change on aerodynamic performance in hovering flight. Our results show that in addition to significant habitat loss and fragmentation, projected upwards elevational shifts vary between 300 and 700 m, depending on climate change scenario and original mean elevation of the target species. Biomechanical analysis indicates that such upwards elevational shifts would yield a~2–5° increase in wing stroke amplitude with no substantial effect on wingbeat frequency. Overall, the physiological impact of elevational shifts of <1000 m in response to climate change is likely to be small relative to other factors such as habitat loss, changes in floristic composition, and increased interspecific competition.  相似文献   

18.
1. The movement of organisms can be driven by multiple factors and has implications for fitness and the spatial distribution of populations. Insects spend a large proportion of their adult lives foraging by flying for resources; however, their capability and motivation to move can vary across individuals. 2. The aims of this study were to examine interindividual and sex differences in flight performance and flight characteristics, using a flight mill bioassay, in Megarhyssa nortoni (Hymenoptera; Ichneumonidae), a parasitoid of the invasive woodwasp Sirex noctilio (Hymenoptera: Siricidae), one of the most important pests of pine afforestation worldwide. We also assessed the influence of morphological traits in combination with sex on flight and explored the cost of flight on longevity and mass loss. 3. The results show a difference between sexes in flight characteristics and performance. Females show greater total distance flown than males, and have a better capacity to undergo sustained flight. Sexual size dimorphism was also found and it was noted that size positively affects distances travelled. Females have a longer life span than males, yet no differences were noted in longevity within sex between individuals that did not fly and those that flew. Age did not influence flight performance of females or impacted on post‐flight longevity. Females lost less body mass than males even after flying longer distances. 4. These results suggest that sex‐specific behaviours probably govern flight abilities together with (and not only because of) morphological traits. The paper discusses sex‐specific life‐history strategies in parasitoids and their implications for biocontrol programmes.  相似文献   

19.
Abstract. . Adult Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) steering anemotactically upwind to a pheromone source in a wind tunnel, respond normally to, and alter their ground speed according to the direction and speed of, the movement of ground patterns beneath them. By manipulating this optomotor reaction component of their behaviour, studies were conducted on their flight duration. The results show a great deal of individual variation in flight duration, and the general data on single flights were skewed towards short flights. Pre-reproductive and inter-reproductive male and female beetles flew significantly longer than older beetles that had passed their peak of reproduction. There was no significant difference in the flight duration of male and female beetles at any age. The overall results suggest mat younger P. truncatus are capable of long-distance flights, and support the proposition that flight could be important in the spread of the beetle.  相似文献   

20.
水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号