首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titin is a large filamentous protein that spans half a sarcomere, from Z‐disk to M‐line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein–protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80–I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81–I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding, which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.  相似文献   

2.
The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.  相似文献   

3.
Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an α-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress.  相似文献   

4.
Steered molecular dynamics studies of titin I1 domain unfolding   总被引:3,自引:0,他引:3       下载免费PDF全文
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band modules have been restricted to I27, the only structurally known Ig domain from the distal region of the titin I-band. In this paper we report SMD simulations unfolding I1, the first structurally available Ig domain from the proximal region of the titin I-band. The simulations are carried out with a view toward upcoming atomic force microscopy experiments. Both constant velocity and constant force stretching have been employed to model mechanical unfolding of oxidized I1, which has a disulfide bond bridging beta-strands C and E, as well as reduced I1, in which the disulfide bridge is absent. The simulations reveal that I1 is protected against external stress mainly through six interstrand hydrogen bonds between its A and B beta-strands. The disulfide bond enhances the mechanical stability of oxidized I1 domains by restricting the rupture of backbone hydrogen bonds between the A'- and G-strands. The disulfide bond also limits the maximum extension of I1 to approximately 220 A. Comparison of the unfolding pathways of I1 and I27 are provided and implications to AFM experiments are discussed.  相似文献   

5.
Obscurin is an approximately 800-kDa protein composed of structural and signaling domains that organizes contractile structures in striated muscle. We have studied the Rho-GEF domain of obscurin to understand its roles in morphogenesis and signaling. We used adenoviral overexpression of this domain, together with ultrastructural and immunofluorescence methods, to examine its effect on maturing myofibrils. We report that overexpression of the Rho-GEF domain specifically inhibits the incorporation of titin into developing Z-disks and disrupts the structure of the Z-disk and Z/I junction, and alters features of the A/I junction. The organization of other sarcomeric markers, including alpha-actinin, was not affected. We identified Ran binding protein 9 (RanBP9) as a novel ligand of the Rho-GEF domain and showed that binding is specific, with an apparent binding affinity of 1.9 muM. Overexpression of the binding region of RanBP9 also disrupted the incorporation of titin into developing Z-disks. Immunofluorescence localization during myofibrillogenesis indicated that the Rho-GEF domain assembles into sarcomeres before RanBP9, which first occurs in myonuclei and later in development translocates to the myoplasm, where it colocalizes with obscurin. Both the Rho-GEF domain and its binding region on RanBP9 bind directly to the N-terminal Ig domains of titin, which flank the Z-disk. Our results suggest that the Rho-GEF domain interacts with RanBP9 and that both can interact with the N-terminal region of titin to influence the formation of the Z-disk and A/I junction.  相似文献   

6.
The mechanisms that determine mechanical stabilities of protein folds remain elusive. Our understanding of these mechanisms is vital to both bioengineering efforts and to the better understanding and eventual treatment of pathogenic mutations affecting mechanically important proteins such as titin. We present a new approach to analyze data from single‐molecule force spectroscopy for different domains of the giant muscle protein titin. The region of titin found in the I‐band of a sarcomere is composed of about 40 Ig‐domains and is exposed to force under normal physiological conditions and connects the free‐hanging ends of the myosin filaments to the Z‐disc. Recent single‐molecule force spectroscopy data show a mechanical hierarchy in the I‐band domains. Domains near the C‐terminus in this region unfold at forces two to three times greater than domains near the beginning of the I‐band. Though all of these Ig‐domains are thought to share a fold and topology common to members of the Ig‐like fold family, the sequences of neighboring domains vary greatly with an average sequence identity of only 25%. We examine in this study the relation of these unique mechanical stabilities of each I‐band Ig domain to specific, conserved physical–chemical properties of amino acid sequences in related Ig domains. We find that the sequences of each individual titin Ig domain are very highly conserved, with an average sequence identity of 79% across species that are divergent as humans, chickens, and zebra fish. This indicates that the mechanical properties of each domain are well conserved and tailored to its unique position in the titin molecule. We used the PCPMer software to determine the conservation of amino acid properties in titin Ig domains grouped by unfolding forces into “strong” and “weak” families. We found two motifs unique to each family that may have some role in determining the mechanical properties of these Ig domains. A detailed statistical analysis of properties of individual residues revealed several positions that displayed differentially conserved properties in strong and weak families. In contrast to previous studies, we find evidence that suggests that the mechanical stability of Ig domains is determined by several residues scattered across the β‐sandwich fold, and force sensitive residues are not only confined to the A′‐G region. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
8.
Polycystin-1 is a large membrane-associated protein that interacts with polycystin-2 in the primary cilia of renal epithelial cells to form a mechanosensitive ion channel. Bending of the cilia induces calcium flow into the cells, mediated by the polycystin complex. Antibodies to polycystin-1 and polycystin-2 abolish this activation. Based on this, it has been suggested that the extracellular region of polycystin-1, which has a number of putative binding domains, may act as a mechanosensor. A large proportion of the extracellular region of polycystin-1 consists of beta-sandwich PKD domains in tandem array. We use atomic force microscopy to investigate the mechanical properties of the PKD domains of polycystin-1. We show that these domains, despite having a low thermodynamic stability, exhibit a remarkable mechanical strength, similar to that of immunoglobulin domains in the giant muscle protein titin. In agreement with the experimental results molecular dynamics simulations performed at low constant force show that the first PKD domain of polycystin (PKDd1) has a similar unfolding time as titin I27, under the same conditions. The simulations suggest that the basis for this mechanical stability is the formation of a force-stabilised intermediate. Our results suggest that these domains will remain folded under external force supporting the hypothesis that polycystin-1 could act as a mechanosensor, detecting changes in fluid flow in the kidney tubule.  相似文献   

9.
The M band of sarcomeric muscle is a highly complex structure which contributes to the maintenance of the regular lattice of thick filaments. We propose that the spatial coordination of this assembly is regulated by specific interactions of myosin filaments, the M band protein myomesin and the large carboxy-terminal region of titin. Corresponding binding sites between these proteins were identified. Myomesin binds myosin in the central region of light meromyosin (LMM, myosin residues 1506-1674) by its unique amino-terminal domain My1. A single titin immunoglobulin domain, m4, interacts with a myomesin fragment spanning domains My4-My6. This interaction is regulated by phosphorylation of Ser482 in the linker between myomesin domains My4 and My5. Myomesin phosphorylation at this site by cAMP-dependent kinase and similar or identical activities in muscle extracts block the association with titin. We propose that this demonstration of a phosphorylation-controlled interaction in the sarcomeric cytoskeleton is of potential relevance for sarcomere formation and/or turnover. It also reveals how binding affinities of modular proteins can be regulated by modifications of inter-domain linkers.  相似文献   

10.
In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment.We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.  相似文献   

11.
Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titin's extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.  相似文献   

12.
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.  相似文献   

13.
C-protein is a major component of skeletal and cardiac muscle thick filaments. Mutations in the gene encoding cardiac C-protein [cardiac myosin binding protein-C (cMyBP-C)] are one of the principal causes of hypertrophic cardiomyopathy. cMyBP-C is a string of globular domains including eight immunoglobulin-like and three fibronectin-like domains termed C0-C10. It binds to myosin and titin, and probably to actin, and may have both a structural and a regulatory role in muscle function. To help to understand the pathology of the known mutations, we have solved the structure of the immunoglobulin-like C1 domain of MyBP-C by X-ray crystallography to a resolution of 1.55 Å. Mutations associated with hypertrophic cardiomyopathy are clustered at one end towards the C-terminus, close to the important C1C2 linker, where they alter the structural integrity of this region and its interactions.  相似文献   

14.
15.
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are modular proteins covalently anchored in the bacterial cell wall of many Gram-positive bacteria. The N-terminal region of most MSCRAMMs carries the ligand-binding domains (A region) which specifically target the host extracellular matrix (ECM) proteins such as collagen, fibrinogen and fibronectin. In Staphylococcus aureus Cna, the prototype collagen-binding MSCRAMM, the A region is followed by a repetitive B region which is found to be conserved among many Gram-positive bacteria. This conservation signifies an important functional role for the B region which is made of repetitive domains. It was suggested that this region could act as a ‘stalk’ as well as a ‘spring’ to present the ligand-binding A region, away from the bacterial surface. But there is no clear functional implication of this region available till date. Each repetitive domain in the B region possesses a variant of the Ig fold called the CnaB fold. Additionally, the B repeats are also paired and the pairs are clustered together. To investigate if the B domains have a function similar to the Ig domains in the I-band region of the giant muscle protein, titin, steered molecular dynamics simulations of one, two and four B repeats of Cna were carried out. The results of the simulations suggest that the B region could provide mechanical stability, extensibility and elasticity to Cna due to the CnaB fold as well as the clustered arrangement of their domains. This study thus provided further insights into the biological underpinnings of adhesin–host interaction.  相似文献   

16.
Mutations in genes for sarcomeric proteins such as titin/connectin are known to cause dilated cardiomyopathy (DCM). However, disease-causing mutations can be identified only in a small proportion of the patients even in the familial cases, suggesting that there remains yet unidentified disease-causing gene(s) for DCM. To explore the novel disease gene for DCM, we examined CRYAB encoding alphaB-crystallin for mutation in the patients with DCM, since alphaB-crystallin was recently reported to associate with the heart-specific N2B domain and adjacent I26/I27 domain of titin/connectin, and we previously reported a N2B mutation, Gln4053ter, in DCM. A missense mutation of CRYAB, Arg157His, was found in a familial DCM patient and the mutation affected the evolutionary conserved amino acid residue among alpha-crystallins. Functional analysis revealed that the mutation decreased the binding to titin/connectin heart-specific N2B domain without affecting distribution of the mutant crystallin protein in cardiomyocytes. In contrast, another CRYAB mutation, Arg120Gly, reported in desmin-related myopathy decreased the binding to both N2B and striated muscle-specific I26/27 domains and showed intracellular aggregates of the mutant protein. These observations suggest that the Arg157His mutation may be involved in the pathogenesis of DCM via impaired accommodation to the heart-specific N2B domain of titin/connectin and its disease-causing mechanism is different from the mutation found in desmin-related myopathy.  相似文献   

17.
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.  相似文献   

18.
Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and components of the mitogen-activated protein signaling cascade, which impacted muscle compliance in Fhl1 knock-out cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.  相似文献   

19.
Titin is a giant, multidomain muscle protein forming a major component of the sarcomere in vertebrate striated muscle. As for many other multidomain proteins, the properties of titin are often studied by characterisation of the constituent domains in isolation. This raises the question of to what extent the properties of the isolated domains are representative of the domains in the wild-type protein. We address this question for the I-band region of titin, which is of particular biological interest due to its role in muscle elasticity, by determining the properties of five immunoglobulin domains from the I-band in three different contexts; firstly as isolated domains with the boundaries defined conservatively, secondly, with a two amino acid extension at both the N and C terminus and thirdly as part of multidomain constructs. We show that adjacent domains in the titin I-band have very different kinetic properties which, in general, undergo only a small change in the presence of neighbouring domains and conclude that, provided that care is taken in the choice of domain boundaries, the properties of the titin I-band are essentially "the sum of its parts". From this and other work we propose that variation in kinetic properties between adjacent domains may be a general property of the I-band thereby preventing misfolding events on muscle relaxation.  相似文献   

20.
BACKGROUND: The giant muscle protein titin contributes to the filament system in skeletal and cardiac muscle cells by connecting the Z disk and the central M line of the sarcomere. One of the physiological functions of titin is to act as a passive spring in the sarcomere, which is achieved by the elastic properties of its central I band region. Titin contains about 300 domains of which more than half are folded as immunoglobulin-like (Ig) domains. Ig domain segments of the I band of titin have been extensively used as templates to investigate the molecular basis of protein elasticity. RESULTS: The structure of the Ig domain I1 from the I band of titin has been determined to 2.1 A resolution. It reveals a novel, reversible disulphide bridge, which is neither required for correct folding nor changes the chemical stability of I1, but it is predicted to contribute mechanically to the elastic properties of titin in active sarcomeres. From the 92 Ig domains in the longest isoform of titin, at least 40 domains have a potential for disulphide bridge formation. CONCLUSIONS: We propose a model where the formation of disulphide bridges under oxidative stress conditions could regulate the elasticity of the I band in titin by increasing sarcomeric resistance. In this model, the formation of the disulphide bridge could refrain a possible directed motion of the two beta sheets or other mechanically stable entities of the I1 Ig domain with respect to each other when exposed to mechanical forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号