首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m1A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m1A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase–HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-l-methionine–binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m1A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m1A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.  相似文献   

2.
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2′-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m1A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.  相似文献   

3.
Yeast 25S rRNA was reported to contain a single cytosine methylation (m5C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m5C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m5C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William''s-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m5C residues. The loss of m5C2278 results in anisomycin hypersensitivity, whereas the loss of m5C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.  相似文献   

4.
Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m7G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m4Cm1402 and m5C1407. Modification at m5C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m4Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell''s own indigenous methyltransferases can play an important role in determining resistance levels.  相似文献   

5.
Methylation at the 5-position of cytosine [m5C (5-methylcytidine)] occurs at three RNA nucleotides in Escherichia coli. All these modifications are at highly conserved nucleotides in the rRNAs, and each is catalyzed by its own m5C methyltransferase enzyme. Two of the enzymes, RsmB and RsmF, are already known and methylate 16S rRNA at nucleotides C967 and C1407, respectively. Here, we report the identity of the third E. coli m5C methyltransferase. Analysis of rRNAs by matrix-assisted laser desorption/ionization mass spectrometry showed that inactivation of the yccW gene leads to loss of m5C methylation at nucleotide 1962 in E. coli 23S rRNA. This methylation is restored by complementing the knockout strain with a plasmid-encoded copy of the yccW gene. Purified recombinant YccW protein retains its specificity for C1962 in vitro and methylates naked 23S rRNA isolated from the yccW knockout strain. However, YccW does not methylate assembled 50S subunits, and this is somewhat surprising as the published crystal structures show nucleotide C1962 to be fully accessible at the subunit interface. YccW-directed methylation at nucleotide C1962 is conserved in bacteria, and loss of this methylation in E. coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m5C methyltransferases RsmB and RsmF and is in fact more similar to known m5U (5-methyluridine) RNA methyltransferases. In keeping with the previously proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI.  相似文献   

6.
7.
Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.  相似文献   

8.
High-level resistance to a broad spectrum of aminoglycoside antibiotics can arise through either N7-methyl guanosine 1405 (m7G1405) or N1-methyl adenosine 1408 (m1A1408) modifications at the drug binding site in the bacterial 30S ribosomal subunit decoding center. Two distinct families of 16S ribosomal RNA (rRNA) methyltransferases that incorporate these modifications were first identified in aminoglycoside-producing bacteria but were more recently identified in both human and animal pathogens. These resistance determinants thus pose a new threat to the usefulness of aminoglycosides as antibiotics, demanding urgent characterization of their structures and activities. Here, we describe approaches to cloning, heterologous expression in Escherichia coli, and purification of two A1408 rRNA methyltransferases: KamB from the aminoglycoside-producer Streptoalloteichus tenebrarius and NpmA identified in a clinical isolate of pathogenic E. coli ARS3. Antibiotic minimum inhibitory concentration (MIC) assays and in vitro analysis of KamB and NpmA using circular dichroism (CD) spectroscopy, S-adenosyl-l-methionine (SAM) binding by isothermal titration calorimetry and 30S subunit methylation assays showed both enzymes were soluble, folded and active. Finally, crystals of each enzyme complexed with SAM were obtained, including selenomethionine-derived KamB, that will facilitate high-resolution X-ray crystallographic analyses of these important bacterial antibiotic-resistance determinants.  相似文献   

9.
The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.  相似文献   

10.
11.
The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m5U747 and C2611/C2612, in domains II and V, respectively, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome.  相似文献   

12.
Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2′O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.  相似文献   

13.
Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m5C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m5C967. In contrast to E. coli RsmF, which introduces a single m5C1407 modification, T. thermophilus RsmF modifies three positions, generating m5C1400 and m5C1404 in addition to m5C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 Å resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.  相似文献   

14.
15.
Ero R  Peil L  Liiv A  Remme J 《RNA (New York, N.Y.)》2008,14(10):2223-2233
In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem–loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m3Ψ) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Ψ1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated pseudouridine in bacteria described to date.  相似文献   

16.
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.  相似文献   

17.
18.
19.
Bacterial 2′-O-methyltransferase TlyA methylates either both nucleotide C1409 of 16S rRNA and C1920 of 23S rRNA or only the C1920. Both ribosomal methylations increase bacterial susceptibility to ribosome-targeting antibiotics capreomycin and viomycin. However, TlyA has been suggested to also function as a hemolysin. Here, heterologous expression of TlyA from six diverse bacteria (including Mycobacterium tuberculosis and M. smegmatis) was found to increase hemolytic ability in the Escherichia coli host. Characterizing E. coli strains expressing mycobacterial TlyA with mutated rRNA recognition domain and impaired rRNA methylations showed that the abolished C1409 methylation altogether with significantly reduced C1920 methylation did not affect E. coli hemolytic activity. Thus, the increased bacterial hemolytic function is not likely a consequence of TlyA-mediated methylations of the ribosome. Purified water-soluble TlyA showed a weak concentration-dependent hemolysis in vitro. Therefore, the TlyA isoform alone is not a potent hemolysin. The results suggested that the bacterial hemolytic function might relate to the over-expression of TlyA and its interaction to other non-ribosomal target that is associated with the hemolytic ability.  相似文献   

20.
The messenger RNA (mRNA) methylations in mammalian cells have been found to contain N6-methyladenosine (m6A), N6-2′-O-dimethyladenosine (m6Am), 7-methylguanosine (m7G), 1-methyladenosine (m1A), 5-methylcytosine (m5C), and 2′-O-methylation (2′-OMe). Their regulatory functions in control of mRNA fate and gene expression are being increasingly uncovered. To unambiguously understand the critical roles of mRNA methylations in physiological and pathological processes, mapping these methylations at single base resolution is highly required. Here, we will review the progresses made in methylation sequencing methodologies developed mainly in recent two years, with an emphasis on chemical labeling-assisted single base resolution methods, and discuss the problems and prospects as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号