首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Translation elongation factor 1β (EF-1β) catalyzes the exchange of bound GDP for GTP on EF-1α. The lethality of a null allele of the TEF5 gene encoding EF-1β in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1α. The strains with tef5::TRP1 suppressed by extra copies of TEF2 were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressors of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1α and EF-1β activity.  相似文献   

4.
5.
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions—the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.  相似文献   

15.
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5''-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号