首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three cell adhesion molecules are present at the axoglial junctions that form between the axon and myelinating glia on either side of nodes of Ranvier. These include an axonal complex of contacin-associated protein (Caspr) and contactin, which was proposed to bind NF155, an isoform of neurofascin located on the glial paranodal loops. Here, we show that NF155 binds directly to contactin and that surprisingly, coexpression of Caspr inhibits this interaction. This inhibition reflects the association of Caspr with contactin during biosynthesis and the resulting expression of a low molecular weight (LMw), endoglycosidase H-sensitive isoform of contactin at the cell membrane, which remains associated with Caspr but is unable to bind NF155. Accordingly, deletion of Caspr in mice by gene targeting results in a shift from the LMw- to a HMw-contactin glycoform. These results demonstrate that Caspr regulates the intracellular processing and transport of contactin to the cell surface, thereby affecting its ability to interact with other cell adhesion molecules.  相似文献   

2.
Defects in N-glycosylation and N-glycan processing frequently cause alterations in plant cell wall architecture, including changes in the structure of cellulose, which is the most abundant plant polysaccharide. KORRIGAN1 (KOR1) is a glycoprotein enzyme with an essential function during cellulose biosynthesis in Arabidopsis thaliana. KOR1 is a membrane-anchored endo-β1,4-glucanase and contains eight potential N-glycosylation sites in its extracellular domain. Here, we expressed A. thaliana KOR1 as a soluble, enzymatically active protein in insect cells and analyzed its N-glycosylation state. Structural analysis revealed that all eight potential N-glycosylation sites are utilized. Individual elimination of evolutionarily conserved N-glycosylation sites did not abolish proper KOR1 folding, but mutations of Asn-216, Asn-324, Asn-345, and Asn-567 resulted in considerably lower enzymatic activity. In contrast, production of wild-type KOR1 in the presence of the class I α-mannosidase inhibitor kifunensine, which abolished the conversion of KOR1 N-glycans into complex structures, did not affect the activity of the enzyme. To address N-glycosylation site occupancy and N-glycan composition of KOR1 under more natural conditions, we expressed a chimeric KOR1-Fc-GFP fusion protein in leaves of Nicotiana benthamiana. Although Asn-108 and Asn-133 carried oligomannosidic N-linked oligosaccharides, the six other glycosylation sites were modified with complex N-glycans. Interestingly, the partially functional KOR1 G429R mutant encoded by the A. thaliana rsw2-1 allele displayed only oligomannosidic structures when expressed in N. benthamiana, indicating its retention in the endoplasmic reticulum. In summary, our data indicate that utilization of several N-glycosylation sites is important for KOR1 activity, whereas the structure of the attached N-glycans is not critical.  相似文献   

3.
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.  相似文献   

4.
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.  相似文献   

5.
In myelinated fibers of the vertebrate nervous system, glial-ensheathing cells interact with axons at specialized adhesive junctions, the paranodal septate-like junctions. The axonal proteins paranodin/Caspr and contactin form a cis complex in the axolemma at the axoglial adhesion zone, and both are required to stabilize the junction. There has been intense speculation that an oligodendroglial isoform of the cell adhesion molecule neurofascin, NF155, expressed at the paranodal loop might be the glial receptor for the paranodin/Caspr-contactin complex, particularly since paranodin/Caspr and NF155 colocalize to ectopic sites in the CNS of the dysmyelinated mouse Shiverer mutant. We report that the extracellular domain of NF155 binds specifically to transfected cells expressing the paranodin/Caspr-contactin complex at the cell surface. This region of NF155 also binds the paranodin/Caspr-contactin complex from brain lysates in vitro. In support of the functional significance of this interaction, NF155 antibodies and the extracellular domain of NF155 inhibit myelination in myelinating cocultures, presumably by blocking the adhesive relationship between the axon and glial cell. These results demonstrate that the paranodin/Caspr-contactin complex interacts biochemically with NF155 and that this interaction is likely to be biologically relevant at the axoglial junction.  相似文献   

6.
The transmembrane ADAM8 (A Disintegrin And Metalloproteinase 8) protein is abundantly expressed in human breast tumors and derived metastases compared with normal breast tissue, and plays critical roles in aggressive Triple-Negative breast cancers (TNBCs). During ADAM8 maturation, the inactive proform dimerizes or multimerizes and autocatalytically removes the prodomain leading to the formation of the active, processed form. ADAM8 is a glycoprotein; however, little was known about the structure or functional role of these sugar moieties. Here, we report that in estrogen receptor (ER)α-negative, but not -positive, breast cancer cells ADAM8 contains N-glycosylation, which is required for its correct processing and activation. Consistently ADAM8 dimers were detected on the surface of ERα-negative breast cancer cells but not on ERα-positive ones. Site-directed mutagenesis confirmed four N-glycosylazhytion sites (Asn-67, Asn-91, Asn-436, and Asn-612) in human ADAM8. The Asn-67 and Asn-91 prodomain sites contained high mannose, whereas complex type N-glycosylation was observed on Asn-436 and Asn-612 in the active and remnant forms. The Asn-91 and Asn-612 sites were essential for its correct processing and cell surface localization, in particular its exit from the Golgi and endoplasmic reticulum, respectively. The N436Q mutation led to decreased ADAM8 stability due to enhanced lysosomal degradation. In contrast, mutation of the Asn-67 site had only modest effects on enzyme stability and processing. Thus, N-glycosylation is essential for processing, localization, stability, and activity of ADAM8.  相似文献   

7.
The mouse macrophage-derived apoptosis inhibitor of macrophage (AIM), which is incorporated into adipocytes and induces lipolysis by suppressing fatty acid synthase (FAS) activity, possesses three potential N-glycosylation sites. Inactivation of N-glycosylation sites revealed that mouse AIM contains two N-glycans in the first and second scavenger receptor cysteine-rich domains, and that depletion of N-glycans decreased AIM secretion from producing cells. Interestingly, the lack of N-glycans increased AIM lipolytic activity through enhancing AIM incorporation into adipocytes. Although human AIM contains no N-glycan, attachment of N-glycans increased AIM secretion. Thus, the N-glycosylation plays important roles in the secretion and lipolytic function of AIM.

Structured summary of protein interactions

AIMphysically interacts with FAS by anti tag coimmunoprecipitation (View interaction)  相似文献   

8.
The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased 14C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.  相似文献   

9.
An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr-contactin chimera from the cell surface. These results suggest that Caspr serves as a "transmembrane scaffold" that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.  相似文献   

10.
Cholera toxin B subunit (CTB) is widely used as a carrier molecule and mucosal adjuvant and for the expression of fusion proteins of interest. CTB-fusion proteins are also expressed in plants, but the N-glycan structures of CTB have not been clarified. To gain insights into the N-glycosylation and N-glycans of CTB expressed in plants, we expressed CTB in rice seeds with an N-terminal glutelin signal and a C-terminal KDEL sequence and analyzed its N-glycosylation and N-glycan structures. CTB was successfully expressed in rice seeds in two forms: a form with N-glycosylation at Asn32 that included both plant-specific N-glycans and small oligomannosidic N-glycans and a non-N-glycosylated form. N-Glycan analysis of CTB showed that approximately 50 % of the N-glycans had plant-specific M3FX structures and that almost none of the N-glycans was of high-mannose-type N-glycan even though the CTB expressed in rice seeds contains a C-terminal KDEL sequence. These results suggest that the CTB expressed in rice was N-glycosylated through the endoplasmic reticulum (ER) and Golgi N-glycosylation machinery without the ER retrieval.  相似文献   

11.
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal–glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at high levels on the surface of unensheathed neurites and are downregulated during myelination in vitro and in vivo. Contactin is downregulated along the entire myelinated nerve fiber. In contrast, Caspr expression initially remains elevated along segments of neurites associated with nascent myelin sheaths. With further maturation, Caspr is downregulated in the internode and becomes strikingly concentrated in the paranodal regions of the axon, suggesting that it redistributes from the internode to these sites. Caspr expression is similarly restricted to the paranodes of mature myelinated axons in the peripheral and central nervous systems; it is more diffusely and persistently expressed in gray matter and on unmyelinated axons. Immunoelectron microscopy demonstrated that Caspr is localized to the septate-like junctions that form between axons and the paranodal loops of myelinating cells. Caspr is poorly extracted by nonionic detergents, suggesting that it is associated with the axon cytoskeleton at these junctions. These results indicate that contactin and Caspr function independently during myelination and that their expression is regulated by glial ensheathment. They strongly implicate Caspr as a major transmembrane component of the paranodal junctions, whose molecular composition has previously been unknown, and suggest its role in the reciprocal signaling between axons and glia.  相似文献   

12.

Background

CD10, also known as neprilysin or enkephalinase exhibiting neutral endopeptidase (NEP) activity, is expressed by B-lineage hematopoietic cells as well as a variety of cells from normal tissues. It cleaves peptides such as cytokines to act for terminating inflammatory responses. Although CD10 molecules of the human pre-B-cell line NALM-6 have 6 consensus N-glycosylation sites, three of them are known to be N-glycosylated by X-ray crystallography.

Methods

In order to investigate the role of N-glycans in the full expression of NEP activity, we modified N-glycans by treatment of NALM6 cells with various glycosidases or alter each of the consensus N-glycosylation sites by generating site-directed mutagenesis and compared the NEP activities of the sugar-altered CD10 with those of intact CD10.

Results

CD10 of the human B-cell line NALM-6 was dominantly localized in raft microdomains and heterogeneously N-glycosylated. Although neither desialylation nor further degalactosylation caused defective NEP activity, removal of only a small part of N-glycans by treatment with glycopeptidase F under non-denaturing conditions decreased NEP activity completely. All of the three consensus sites of CD10 in HEK293 cells introduced with wild type-CD10 were confirmed to be N-glycosylated. Surface expression of N-glycan at Asn628-deleted CD10 by HEK293 cells was greatly decreased as well as it lost entire NEP activities.

Conclusions

N-glycosylation at Asn628 is essential not only for NEP activities, but also for surface expression.

General significance

Quality control system does not allow dysfunctional ecto-type proteases to express on plasma membrane.  相似文献   

13.
Recently we reported that N-glycans on the β-propeller domain of the integrin α5 subunit (S-3,4,5) are essential for α5β1 heterodimerization, expression, and cell adhesion. Herein to further investigate which N-glycosylation site is the most important for the biological function and regulation, we characterized the S-3,4,5 mutants in detail. We found that site-4 is a key site that can be specifically modified by N-acetylglucosaminyltransferase III (GnT-III). The introduction of bisecting GlcNAc into the S-3,4,5 mutant catalyzed by GnT-III decreased cell adhesion and migration on fibronectin, whereas overexpression of N-acetylglucosaminyltransferase V (GnT-V) promoted cell migration. The phenomenon is similar to previous observations that the functions of the wild-type α5 subunit were positively and negatively regulated by GnT-V and GnT-III, respectively, suggesting that the α5 subunit could be duplicated by the S-3,4,5 mutant. Interestingly GnT-III specifically modified the S-4,5 mutant but not the S-3,5 mutant. This result was confirmed by erythroagglutinating phytohemagglutinin lectin blot analysis. The reduction in cell adhesion was consistently observed in the S-4,5 mutant but not in the S-3,5 mutant cells. Furthermore mutation of site-4 alone resulted in a substantial decrease in erythroagglutinating phytohemagglutinin lectin staining and suppression of cell spread induced by GnT-III compared with that of either the site-3 single mutant or wild-type α5. These results, taken together, strongly suggest that N-glycosylation of site-4 on the α5 subunit is the most important site for its biological functions. To our knowledge, this is the first demonstration that site-specific modification of N-glycans by a glycosyltransferase results in functional regulation.Glycosylation is a crucial post-translational modification of most secreted and cell surface proteins (1). Glycosylation is involved in a variety of physiological and pathological events, including cell growth, migration, differentiation, and tumor invasion. It is well known that glycans play important roles in cell-cell communication, intracellular signal transduction, protein folding, and stability (2, 3).Integrins comprise a family of receptors that are important for cell adhesion. The major function of integrins is to connect cells to the extracellular matrix, activate intracellular signaling pathways, and regulate cytoskeletal formation (4). Integrin α5β1 is well known as a fibronectin (FN)3 receptor. The interaction between integrin α5 and FN is essential for cell migration, cell survival, and development (58). In addition, integrins are N-glycan carrier proteins. For example, α5β1 integrin contains 14 and 12 putative N-glycosylation sites on the α5 and β1 subunits, respectively. Several studies suggest that N-glycosylation is essential for functional integrin α5β1. When human fibroblasts were cultured in the presence of 1-deoxymannojirimycin, which prevents N-linked oligosaccharide processing, immature α5β1 integrin appeared on the cell surface, and FN-dependent adhesion was greatly reduced (9). Treatment of purified integrin α5β1 with N-glycosidase F, which cleaves between the innermost N-acetylglucosamine (GlcNAc) and asparagine N-glycan residues of N-linked glycoproteins, prevented the inherent association between subunits and blocked α5β1 binding to FN (10).A growing body of evidence indicates that the presence of the appropriate oligosaccharide can modulate integrin activation. N-Acetylglucosaminyltransferase III (GnT-III) catalyzes the addition of GlcNAc to mannose that is β1,4-linked to an underlying N-acetylglucosamine, producing what is known as a “bisecting” GlcNAc linkage as shown in Fig. 1B. GnT-III is generally regarded as a key glycosyltransferase in N-glycan biosynthetic pathways and contributes to inhibition of metastasis. The introduction of a bisecting GlcNAc catalyzed by GnT-III suppresses additional processing and elongation of N-glycans. These reactions, which are catalyzed in vitro by other glycosyltransferases, such as N-acetylglucosaminyltransferase V (GnT-V), which catalyzes the formation of β1,6 GlcNAc branching structures (Fig. 1B) and plays important roles in tumor metastasis, do not proceed because the enzymes cannot utilize the bisected N-glycans as a substrate. Introduction of the bisecting GlcNAc to integrin α5 by overexpression of GnT-III resulted in decreased in ligand binding and down-regulation of cell adhesion and migration (1113). Contrary to the functions of GnT-III, overexpression of GnT-V promoted integrin α5β1-mediated cell migration on FN (14). These observations clearly demonstrate that the alteration of N-glycan structure affected the biological functions of integrin α5β1. Similarly characterization of the carbohydrate moieties in integrin α3β1 from non-metastatic and metastatic human melanoma cell lines showed that expression of β1,6 GlcNAc branched structures was higher in metastatic cells compared with non-metastatic cells, confirming the notion that the β1,6 GlcNAc branched structure confers invasive and metastatic properties to cancer cells. In fact, Partridge et al. (15) reported that GnT-V-modified N-glycans containing poly-N-acetyllactosamine, the preferred ligand for galectin-3, on surface receptors oppose their constitutive endocytosis, promoting intracellular signaling and consequently cell migration and tumor metastasis.Open in a separate windowFIGURE 1.Potential N-glycosylation sites on the α5 subunit and its modification by GnT-III and GnT-V. A, schematic diagram of potential N-glycosylation sites on the α5 subunit. Putative N-glycosylation sites are indicated by triangles, and point mutations are indicated by crosses (N84Q, N182Q, N297Q, N307Q, N316Q, N524Q, N530Q, N593Q, N609Q, N675Q, N712Q, N724Q, N773Q, and N868Q). B, illustration of the reaction catalyzed by GnT-III and GnT-V. Square, GlcNAc; circle, mannose. TM, transmembrane domain.In addition, sialylation on the non-reducing terminus of N-glycans of α5β1 integrin plays an important role in cell adhesion. Colon adenocarcinomas express elevated levels of α2,6 sialylation and increased activity of ST6GalI sialyltransferase. Elevated ST6GalI positively correlated with metastasis and poor survival. Therefore, ST6GalI-mediated hypersialylation likely plays a role in colorectal tumor invasion (16, 17). In fact, oncogenic ras up-regulated ST6GalI and, in turn, increased sialylation of β1 integrin adhesion receptors in colon epithelial cells (18). However, this is not always the case. The expression of hyposialylated integrin α5β1 was induced by phorbol esterstimulated differentiation in myeloid cells in which the expression of the ST6GalI was down-regulated by the treatment, increasing FN binding (19). A similar phenomenon was also observed in hematopoietic or other epithelial cells. In these cells, the increased sialylation of the β1 integrin subunit was correlated with reduced adhesiveness and metastatic potential (2022). In contrast, the enzymatic removal of α2,8-linked oligosialic acids from the α5 integrin subunit inhibited cell adhesion to FN (23). Collectively these findings suggest that the interaction of integrin α5β1 with FN is dependent on its N-glycosylation and the processing status of N-glycans.Because integrin α5β1 contains multipotential N-glycosylation sites, it is important to determine the sites that are crucial for its biological function and regulation. Recently we found that N-glycans on the β-propeller domain (sites 3, 4, and 5) of the integrin α5 subunit are essential for α5β1 heterodimerization, cell surface expression, and biological function (24). In this study, to further investigate the underlying molecular mechanism of GnT-III-regulated biological functions, we characterized the N-glycans on the α5 subunit in detail using genetic and biochemical approaches and found that site-4 is a key site that can be specifically modified by GnT-III.  相似文献   

14.
NMDA receptors (NMDARs) comprise a subclass of neurotransmitter receptors whose surface expression is regulated at multiple levels, including processing in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, internalization, recycling, and degradation. With respect to early processing, NMDARs are regulated by the availability of GluN subunits within the ER, the presence of ER retention and export signals, and posttranslational modifications, including phosphorylation and palmitoylation. However, the role of N-glycosylation, one of the most common posttranslational modifications, in regulating NMDAR processing has not been studied in detail. Using biochemistry, confocal and electron microscopy, and electrophysiology in conjunction with a lentivirus-based molecular replacement strategy, we found that NMDARs are released from the ER only when two asparagine residues in the GluN1 subunit (Asn-203 and Asn-368) are N-glycosylated. Although the GluN2A and GluN2B subunits are also N-glycosylated, their N-glycosylation sites do not appear to be essential for surface delivery of NMDARs. Furthermore, we found that removing N-glycans from native NMDARs altered the receptor affinity for glutamate. Our results suggest a novel mechanism by which neurons ensure that postsynaptic membranes contain sufficient numbers of functional NMDARs.  相似文献   

15.
Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G(-/-) mice, these proteins "piled up" at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.  相似文献   

16.
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.  相似文献   

17.

Background

Vacancy of occupied N-glycosylation sites of glycoproteins is quite disruptive to a multicellular organism, as underlined by congenital disorders of glycosylation. Since a neuronal component is typically associated with this disease, we evaluated the impact of N-glycosylation processing of a neuronal voltage gated potassium channel, Kv3.1b, expressed in a neuronal-derived cell line, B35 neuroblastoma cells.

Methods

Total internal reflection fluorescence and differential interference contrast microscopy measurements of live B35 cells expressing wild type and glycosylation mutant Kv3.1b proteins were used to evaluate the distribution of the various forms of the Kv3.1b protein in the cell body and outgrowths. Cell adhesion assays were also employed.

Results

Microscopy images revealed that occupancy of both N-glycosylation sites of Kv3.1b had relatively similar amounts of Kv3.1b in the outgrowth and cell body while vacancy of one or both sites led to increased accumulation of Kv3.1b in the cell body. Further both the fully glycosylated and partially glycosylated N229Q Kv3.1b proteins formed higher density particles in outgrowths compared to cell body. Cellular assays demonstrated that the distinct spatial arrangements altered cell adhesion properties.

Conclusions

Our findings provide direct evidence that occupancy of the N-glycosylation sites of Kv3.1b contributes significantly to its lateral heterogeneity in membranes of neuronal-derived cells, and in turn alters cellular properties.

General significance

Our study demonstrates that N-glycans of Kv3.1b contain information regarding the association, clustering, and distribution of Kv3.1b in the cell membrane, and furthermore that decreased occupancy caused by congenital disorders of glycosylation may alter the biological activity of Kv3.1b.  相似文献   

18.
More and more evidence indicates that N-glycan regulates signal transduction by modulating receptor functions. Previous studies suggested that glycosylation of EGFR is involved in dimerization and endocytosis. We further determined the role of N-glycosylation of ErbB family. A series of human ErbB3 mutants that lack each of the 10 N-glycosylation sites were prepared and transfected to Flp-In-CHO cells for stable expression. A crosslinking study showed that Asn 418 to Gln mutant (N418Q) of ErbB3 underwent autodimerization without its ligand, heregulin, and the heterodimer formation with ErbB2 was also increased. The N418Q mutant of ErbB3 co-expressed with ErbB2 promoted downstream signaling, anchorage-independent cell growth and the tumor growth in athymic mice. These findings suggest that the specific N-glycan in domain III of ErbB family plays an essential role in regulating receptor dimerization and transforming activity. We assume that the N-glycans affect the conformation of ErbB family, which is crucial for their activity. Together with findings from other laboratories, it is suggested that N-glycosylation controls ErbB signaling by various mechanisms.  相似文献   

19.
Modifications in cell surface glycosylation affecting cell adhesion are common characteristics of transformed cells. This study characterizes the N-glycosylation profile of E-cadherin in models of canine mammary gland adenoma and carcinoma evaluating the importance of these glycosylation modifications in the malignant phenotype.Our results show that the pattern of E-cadherin N-glycosylation in mammary carcinoma is characterized by highly branched N-glycans, increase in sialylation and an expression of few high mannose structures. Detailed mass spectrometry analysis demonstrated a new N-glycosylation site containing a potential complex type N-glycan in E-cadherin from a mammary carcinoma cell line.Our study demonstrates the importance of E-cadherin N-glycans in the process of tumor development and in the transformation to the malignant phenotype.  相似文献   

20.
Classical swine fever virus (CSFV) outer surface E2 glycoprotein represents an important target to induce protective immunization during infection but the influence of N-glycosylation pattern in antigenicity is yet unclear. In the present work, the N-glycosylation of the E2-CSFV extracellular domain expressed in goat milk was determined. Enzymatic N-glycans releasing, 2-aminobenzamide (2AB) labeling, weak anion-exchange and normal-phase HPLC combined with exoglycosidase digestions and mass spectrometry of 2AB-labeled and unlabeled N-glycans showed a heterogenic population of oligomannoside, hybrid and complex-type structures. The detection of two Man8GlcNAc2 isomers indicates an alternative active pathway in addition to the classical endoplasmic reticulum processing. N-acetyl or N-glycolyl monosialylated species predominate over neutral complex-type N-glycans. Asn207 site-specific micro-heterogeneity of the E2 most relevant antigenic and virulence site was determined by HPLC-mass spectrometry of glycopeptides. The differences in N-glycosylation with respect to the native E2 may not disturb the main antigenic domains when expressed in goat milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号