首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hanli Xu  Yongtao Guan 《Genetics》2014,197(3):823-838
A novel haplotype association method is presented, and its power is demonstrated. Relying on a statistical model for linkage disequilibrium (LD), the method first infers ancestral haplotypes and their loadings at each marker for each individual. The loadings are then used to quantify local haplotype sharing between individuals at each marker. A statistical model was developed to link the local haplotype sharing and phenotypes to test for association. We devised a novel method to fit the LD model, reducing the complexity from putatively quadratic to linear (in the number of ancestral haplotypes). Therefore, the LD model can be fitted to all study samples simultaneously, and, consequently, our method is applicable to big data sets. Compared to existing haplotype association methods, our method integrated out phase uncertainty, avoided arbitrariness in specifying haplotypes, and had the same number of tests as the single-SNP analysis. We applied our method to data from the Wellcome Trust Case Control Consortium and discovered eight novel associations between seven gene regions and five disease phenotypes. Among these, GRIK4, which encodes a protein that belongs to the glutamate-gated ionic channel family, is strongly associated with both coronary artery disease and rheumatoid arthritis. A software package implementing methods described in this article is freely available at http://www.haplotype.org.  相似文献   

3.
Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur, with a large region of excess French ancestry harboring a gene with a known disease association. Similar variation was detected in the mouse hybrid zone, with notable constancy in regions of excess ancestry among admixed populations. By filling what has been an analytical gap, the proposed method should be a useful tool for many biologists. A computer program (popanc), written in C++, has been developed based on the proposed method and is available on-line at http://sourceforge.net/projects/popanc/.  相似文献   

4.
Although comparison of RNA-protein interaction profiles across different conditions has become increasingly important to understanding the function of RNA-binding proteins (RBPs), few computational approaches have been developed for quantitative comparison of CLIP-seq datasets. Here, we present an easy-to-use command line tool, dCLIP, for quantitative CLIP-seq comparative analysis. The two-stage method implemented in dCLIP, including a modified MA normalization method and a hidden Markov model, is shown to be able to effectively identify differential binding regions of RBPs in four CLIP-seq datasets, generated by HITS-CLIP, iCLIP and PAR-CLIP protocols. dCLIP is freely available at http://qbrc.swmed.edu/software/.  相似文献   

5.
Recent studies have revealed that a small non-coding RNA, microRNA (miRNA) down-regulates its mRNA targets. This effect is regarded as an important role in various biological processes. Many studies have been devoted to predicting miRNA-target interactions. These studies indicate that the interactions may only be functional in some specific tissues, which depend on the characteristics of an miRNA. No systematic methods have been established in the literature to investigate the correlation between miRNA-target interactions and tissue specificity through microarray data. In this study, we propose a method to investigate miRNA-target interaction-supported tissues, which is based on experimentally validated miRNA-target interactions. The tissue specificity results by our method are in accordance with the experimental results in the literature.

Availability and Implementation

Our analysis results are available at http://tsmti.mbc.nctu.edu.tw/ and http://www.stat.nctu.edu.tw/hwang/tsmti.html.  相似文献   

6.
Detection of remote sequence homology is essential for the accurate inference of protein structure, function and evolution. The most sensitive detection methods involve the comparison of evolutionary patterns reflected in multiple sequence alignments (MSAs) of protein families. We present PROCAIN, a new method for MSA comparison based on the combination of ‘vertical’ MSA context (substitution constraints at individual sequence positions) and ‘horizontal’ context (patterns of residue content at multiple positions). Based on a simple and tractable profile methodology and primitive measures for the similarity of horizontal MSA patterns, the method achieves the quality of homology detection comparable to a more complex advanced method employing hidden Markov models (HMMs) and secondary structure (SS) prediction. Adding SS information further improves PROCAIN performance beyond the capabilities of current state-of-the-art tools. The potential value of the method for structure/function predictions is illustrated by the detection of subtle homology between evolutionary distant yet structurally similar protein domains. ProCAIn, relevant databases and tools can be downloaded from: http://prodata.swmed.edu/procain/download. The web server can be accessed at http://prodata.swmed.edu/procain/procain.php.  相似文献   

7.
8.
A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the “projected feature points” in the sequence of images. The matched projected feature points in the - plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.  相似文献   

9.
Accurate tools for multiple sequence alignment (MSA) are essential for comparative studies of the function and structure of biological sequences. However, it is very challenging to develop a computationally efficient algorithm that can consistently predict accurate alignments for various types of sequence sets. In this article, we introduce PicXAA (Probabilistic Maximum Accuracy Alignment), a probabilistic non-progressive alignment algorithm that aims to find protein alignments with maximum expected accuracy. PicXAA greedily builds up the multiple alignment from sequence regions with high local similarities, thereby yielding an accurate global alignment that effectively grasps the local similarities among sequences. Evaluations on several widely used benchmark sets show that PicXAA constantly yields accurate alignment results on a wide range of reference sets, with especially remarkable improvements over other leading algorithms on sequence sets with local similarities. PicXAA source code is freely available at: http://www.ece.tamu.edu/∼bjyoon/picxaa/.  相似文献   

10.
The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger genotyping proportions may provide roughly equivalent power to complete genotyping and that using smaller genotyping proportions has difficulties doing so. The R code of our proposed method is available on http://www.stat.sinica.edu.tw/chkao/.  相似文献   

11.
12.
Aggregatibacter actinomycetemcomitans is a major etiological agent of periodontitis. Here we report the complete genome sequence of serotype c strain D11S-1, which was recovered from the subgingival plaque of a patient diagnosed with generalized aggressive periodontitis.Aggregatibacter actinomycetemcomitans is a major etiologic agent of human periodontal disease, in particular aggressive periodontitis (12). The natural population of A. actinomycetemcomitans is clonal (7). Six A. actinomycetemcomitans serotypes are distinguished based on the structural and serological characteristics of the O antigen of LPS (6, 7). Three of the serotypes (a, b, and c) comprise >80% of all strains, and each serotype represents a distinct clonal lineage (1, 6, 7). Serotype c strain D11S-1 was cultured from a subgingival plaque sample of a patient diagnosed with generalized aggressive periodontitis. The complete genome sequencing of the strain was determined by 454 pyrosequencing (10), which achieved 25× coverage. Assembly was performed using the Newbler assembler (454, Branford, CT) and generated 199 large contigs, with 99.3% of the bases having a quality score of 40 and above. The contigs were aligned with the genome of the sequenced serotype b strain HK1651 (http://www.genome.ou.edu/act.html) using software written in house. The putative contig gaps were then closed by primer walking and sequencing of PCR products over the gaps. The final genome assembly was further confirmed by comparison of an in silico NcoI restriction map to the experimental map generated by optical mapping (8). The genome structure of the D11S-1 strain was compared to that of the sequenced strain HK1651 using the program MAUVE (2, 3). The automated annotation was done using a protocol similar to the annotation engine service at The Institute for Genomic Research/J. Craig Venter Institute with some local modifications. Briefly, protein-coding genes were identified using Glimmer3 (4). Each protein sequence was then annotated by comparing to the GenBank nonredundant protein database. BLAST-Extend-Repraze was applied to the predicted genes to identify genes that might have been truncated due to a frameshift mutation or premature stop codon. tRNA and rRNA genes were identified by using tRNAScan-SE (9) and a similarity search to our in-house RNA database, respectively.The D11S-1 circular genome contains 2,105,764 nucleotides, a GC content of 44.55%, 2,134 predicted coding sequences, and 54 tRNA and 19 rRNA genes (see additional data at http://expression.washington.edu/bumgarnerlab/publications.php). The distribution of predicted genes based on functional categories was similar between D11S-1 and HK1651 (http://expression.washington.edu/bumgarnerlab/publications.php). One hundred six and 86 coding sequences were unique to strain D11S-1 and HK1651, respectively (http://expression.washington.edu/bumgarnerlab/publications.php). Genomic islands were identified based on annotations for strain HK1651 and based on manual inspection of contiguous D11S-1 specific DNA regions with G+C bias (http://expression.washington.edu/bumgarnerlab/publications.php). Among 12 identified genomics islands, 5 (B, C, D, E and G; cytolethal distending toxin gene cluster, tight adherence gene cluster, O-antigen biosynthesis and transport gene cluster, leukotoxin gene cluster, and lipoligosaccharide biosynthesis enzyme gene, respectively) correspond to islands 2 to 5 and 8 of strain HK1651 (http://www.oralgen.lanl.gov/) (5). Island F (∼5 kb) is homologous to a portion of the 12.5-kb island 7 in HK1651. Five genomic islands (H to L) were unique to strain D11S-1. The remaining island (A) is a fusion of genomic islands 1 and 6, in strain HK1651. The genome of D11S-1 is largely in synteny with the genome of the sequenced serotype b strain HK1651 but contained several large-scale genomic rearrangements.Strain D11S-1 harbors a 43-kb bacteriophage and two plasmids of 31 and 23 kb (http://expression.washington.edu/bumgarnerlab/publications.php). Excluding an ∼9-kb region of low homology, the phage showed >90% nucleotide sequence identity with AaΦ23 (11). A 49-bp attB site (11) was identified at coordinates 2,024,825 to 2,024,873. The location of the inserted phage was identified in the optical map of strain D11S-1 and further confirmed by PCR amplification and sequencing of the regions flanking the insertion site. A closed circular form of the phage was also detected in strain D11S-1 by PCR analysis of the phage ends. The 23-kb plasmid is homologous to pVT745 (92% nucleotide identities). The 31-kb plasmid is a novel plasmid. It has significant homologies in short regions (<2 kb) to Haemophilus influenzae biotype aegyptius plasmid pF1947 and other plasmids.  相似文献   

13.
In this paper we introduce an efficient algorithm for alignment of multiple large-scale biological networks. In this scheme, we first compute a probabilistic similarity measure between nodes that belong to different networks using a semi-Markov random walk model. The estimated probabilities are further enhanced by incorporating the local and the cross-species network similarity information through the use of two different types of probabilistic consistency transformations. The transformed alignment probabilities are used to predict the alignment of multiple networks based on a greedy approach. We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability. Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands of nodes on a personal computer without any difficulty. The source code of SMETANA is available upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/~bjyoon/SMETANA/.  相似文献   

14.

Background

The ability to identify regions of the genome inherited with a dominant trait in one or more families has become increasingly valuable with the wide availability of high throughput sequencing technology. While a number of methods exist for mapping of homozygous variants segregating with recessive traits in consanguineous families, dominant conditions are conventionally analysed by linkage analysis, which requires computationally demanding haplotype reconstruction from marker genotypes and, even using advanced parallel approximation implementations, can take substantial time, particularly for large pedigrees. In addition, linkage analysis lacks sensitivity in the presence of phenocopies (individuals sharing the trait but not the genetic variant responsible). Combinatorial Conflicting Homozygosity (CCH) analysis uses high density biallelic single nucleotide polymorphism (SNP) marker genotypes to identify genetic loci within which consecutive markers are not homozygous for different alleles. This allows inference of identical by descent (IBD) inheritance of a haplotype among a set or subsets of related or unrelated individuals.

Results

A single genome-wide conflicting homozygosity analysis takes <3 seconds and parallelisation permits multiple combinations of subsets of individuals to be analysed quickly. Analysis of unrelated individuals demonstrated that in the absence of IBD inheritance, runs of no CH exceeding 4 cM are not observed. At this threshold, CCH is >97% sensitive and specific for IBD regions within a pedigree exceeding this length and was able to identify the locus responsible for a dominantly inherited kidney disease in a Turkish Cypriot family in which six out 17 affected individuals were phenocopies. It also revealed shared ancestry at the disease-linked locus among affected individuals from two different Cypriot populations.

Conclusions

CCH does not require computationally demanding haplotype reconstruction and can detect regions of shared inheritance of a haplotype among subsets of related or unrelated individuals directly from SNP genotype data. In contrast to parametric linkage allowing for phenocopies, CCH directly provides the exact number and identity of individuals sharing each locus. CCH can also identify regions of shared ancestry among ostensibly unrelated individuals who share a trait. CCH is implemented in Python and is freely available (as source code) from http://sourceforge.net/projects/cchsnp/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1360-4) contains supplementary material, which is available to authorized users.  相似文献   

15.
Recent metagenomics studies of environmental samples suggested that microbial communities are much more diverse than previously reported, and deep sequencing will significantly increase the estimate of total species diversity. Massively parallel pyrosequencing technology enables ultra-deep sequencing of complex microbial populations rapidly and inexpensively. However, computational methods for analyzing large collections of 16S ribosomal sequences are limited. We proposed a new algorithm, referred to as ESPRIT, which addresses several computational issues with prior methods. We developed two versions of ESPRIT, one for personal computers (PCs) and one for computer clusters (CCs). The PC version is used for small- and medium-scale data sets and can process several tens of thousands of sequences within a few minutes, while the CC version is for large-scale problems and is able to analyze several hundreds of thousands of reads within one day. Large-scale experiments are presented that clearly demonstrate the effectiveness of the newly proposed algorithm. The source code and user guide are freely available at http://www.biotech.ufl.edu/people/sun/esprit.html.  相似文献   

16.
Structural variation (SV) has been reported to be associated with numerous diseases such as cancer. With the advent of next generation sequencing (NGS) technologies, various types of SV can be potentially identified. We propose a model based clustering approach utilizing a set of features defined for each type of SV events. Our method, termed SVMiner, not only provides a probability score for each candidate, but also predicts the heterozygosity of genomic deletions. Extensive experiments on genome-wide deep sequencing data have demonstrated that SVMiner is robust against the variability of a single cluster feature, and it significantly outperforms several commonly used SV detection programs. SVMiner can be downloaded from http://cbc.case.edu/svminer/.  相似文献   

17.
The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.  相似文献   

18.
Inference of population structure and individual ancestry is important both for population genetics and for association studies. With next generation sequencing technologies it is possible to obtain genetic data for all accessible genetic variations in the genome. Existing methods for admixture analysis rely on known genotypes. However, individual genotypes cannot be inferred from low-depth sequencing data without introducing errors. This article presents a new method for inferring an individual’s ancestry that takes the uncertainty introduced in next generation sequencing data into account. This is achieved by working directly with genotype likelihoods that contain all relevant information of the unobserved genotypes. Using simulations as well as publicly available sequencing data, we demonstrate that the presented method has great accuracy even for very low-depth data. At the same time, we demonstrate that applying existing methods to genotypes called from the same data can introduce severe biases. The presented method is implemented in the NGSadmix software available at http://www.popgen.dk/software.  相似文献   

19.
We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号