首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.  相似文献   

2.
Imbalanced maternal nutrition during gestation can cause alterations of the hypothalamic-pituitary-adrenal (HPA) system in offspring. The present study investigated the effects of maternal low- and high-protein diets during gestation in pigs on the maternal-fetal HPA regulation and expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2) and c-fos mRNAs in the placenta and fetal brain. Twenty-seven German Landrace sows were fed diets with high (HP, 30%), low (LP, 6.5%) or adequate (AP, 12.1%) protein levels made isoenergetic by varying the carbohydrate levels. On gestational day 94, fetuses were recovered under general anesthesia for the collection of blood, brain and placenta samples. The LP diet in sows increased salivary cortisol levels during gestation compared to the HP and AP sows and caused an increase of placental GR and c-fos mRNA expression. However, the diurnal rhythm of plasma cortisol was disturbed in both LP and HP sows. Total plasma cortisol concentrations in the umbilical cord vessels were elevated in fetuses from HP sows, whereas corticosteroid-binding globulin levels were decreased in LP fetuses. In the hypothalamus, LP fetuses displayed an enhanced mRNA expression of 11β-HSD1 and a reduced expression of c-fos. Additionally, the 11β-HSD2 mRNA expression was decreased in both LP and HP fetuses. The present results suggest that both low and high protein∶carbohydrate dietary ratios during gestation may alter the expression of genes encoding key determinants of glucocorticoid hormone action in the fetus with potential long-lasting consequences for stress adaptation and health.  相似文献   

3.
We aimed to evaluate macrophages heterogeneity and structural, functional and inflammatory alterations in rat kidney by aldosterone + salt administration. The effects of treatment with spironolactone on above parameters were also analyzed. Male Wistar rats received aldosterone (1 mgkg-1d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg kg-1d-1). Systolic and diastolic blood pressures were elevated (p<0.05) in aldosterone + salt–treated rats. Relative kidney weight, collagen content, fibronectin, macrophage infiltrate, CTGF, Col I, MMP2, TNF-α, CD68, Arg2, and SGK-1 were increased (p<0.05) in aldosterone + salt–treated rats, being reduced by spironolactone (p<0.05). Increased iNOS and IFN-γ mRNA gene expression (M1 macrophage markers) was observed in aldosterone + salt rats, whereas no significant differences were observed in IL-10 and gene ArgI mRNA expression or ED2 protein content (M2 macrophage markers). All the observed changes were blocked with spironolactone treatment. Macrophage depletion with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-γ or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorticoid receptors activation.  相似文献   

4.
11β-hydroxysteroid dehydrogenases type 2 (11β-HSD2), a key regulator for pre-receptor metabolism of glucocorticoids (GCs) by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion) through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.  相似文献   

5.
Mihailidou AS  Funder JW 《Steroids》2005,70(5-7):347-351
Fifteen years ago Wehling and colleagues showed unequivocal rapid effects of aldosterone, neither mimicked by cortisol nor blocked by spironolactone, and postulated that these nongenomic effects are mediated via a membrane receptor distinct from the classical mineralocorticoid receptor (MR). Several recent studies have challenged this view. Alzamora et al. showed 11beta-hydroxysteroid denydrogenase 1 and 2 (11betaHSD1, 11betaHSD2) expression in human vascular smooth muscle cells, and that aldosterone rapidly raises intracellular pH via sodium-hydrogen exchange; cortisol is without effect and spironolactone does not block the aldosterone response. When, however, 11betaHSD activity is blocked by carbenoxolone, cortisol shows agonist effects indistinguishable from aldosterone; in addition, the effect of both aldosterone and cortisol is blocked by the open E-ring, water soluble MR antagonist RU28318. In rabbit cardiomyocytes, aldosterone increases intracellular [Na+] by activating Na+/K+/2Cl- cotransport, with secondary effects on Na+/K+ pump activity. Pump current rises approximately 10-fold within 15', is unaffected by actinomycin D or the MR antagonist canrenone, and not elevated by cortisol. Pump current is, however, completely blocked by the open E-ring, water soluble MR antagonist K+ canrenoate and stoichometrically by cortisol. PKCepsilon agonist peptides (but not PKCalpha, PKCdelta or scrambled PKCepsilon peptides) mimic the effect of aldosterone, and PKCepsilon antagonist peptides block the effect. Very recently, cortisol has been shown to mimic the effect of aldosterone when cardiomyocyte redox state is altered by the installation of oxidized glutathione (GSSG) via the pipet, paralleling the effect of carbenoxolone on vascular smooth cells and suggesting possible pathophysiologic roles for an always glucocorticoid occupied MR.  相似文献   

6.
Aldosterone acts on its target tissue through a classical mechanism or through the rapid pathway through a putative membrane-bound receptor. Our goal here was to better understand the molecular and biochemical rapid mechanisms responsible for aldosterone-induced cardiomyocyte hypertrophy. We have evaluated the hypertrophic process through the levels of ANP, which was confirmed by the analysis of the superficial area of cardiomyocytes. Aldosterone increased the levels of ANP and the cellular area of the cardiomyocytes; spironolactone reduced the aldosterone-increased ANP level and cellular area of cardiomyocytes. Aldosterone or spironolactone alone did not increase the level of cyclic 3',5'-adenosine monophosphate (cAMP), but aldosterone plus spironolactone led to increased cAMP level; the treatment with aldosterone?+?spironolactone?+?BAPTA-AM reduced the levels of cAMP. These data suggest that aldosterone-induced cAMP increase is independent of mineralocorticoid receptor (MR) and dependent on Ca2+. Next, we have evaluated the role of A-kinase anchor proteins (AKAP) in the aldosterone-induced hypertrophic response. We have found that St-Ht31 (AKAP inhibitor) reduced the increased level of ANP which was induced by aldosterone; in addition, we have found an increase on protein kinase C (PKC) and extracellular signal-regulated kinase 5 (ERK5) activity when cells were treated with aldosterone alone, spironolactone alone and with a combination of both. Our data suggest that PKC could be responsible for ERK5 aldosterone-induced phosphorylation. Our study suggests that the aldosterone through its rapid effects promotes a hypertrophic response in cardiomyocytes that is controlled by an AKAP, being dependent on ERK5 and PKC, but not on cAMP/cAMP-dependent protein kinase signaling pathways. Lastly, we provide evidence that the targeting of AKAPs could be relevant in patients with aldosterone-induced cardiac hypertrophy and heart failure.  相似文献   

7.
RALES, EPHESUS and redox   总被引:4,自引:0,他引:4  
In RALES, low doses of the mineralocorticoid receptor (MR) antagonist spironolactone, added to standard of care for severe heart failure, improved survival by 30% and lowered hospitalization by 35%. Animal studies with the selective MR antagonist eplerenone have similarly shown MR blockade to prevent the cerebral, renal and coronary vascular inflammatory response to elevated aldosterone levels. There is now general acceptance that aldosterone concentrations inappropriate for salt status have major deleterious effects on the cardiovascular system.

In many instances, however (e.g. Randomized Aldactone Evaluation Study (RALES), EPHESUS) aldosterone levels are normal and salt status unremarkable and yet MR blockade has unquestioned benefits. In these instances, there is increasing evidence that coronary and cardiac MR are activated by normal circulating cortisol levels, in the cellular context of generation of reactive oxygen species (ROS) and/or alteration in intracellular redox status.

MR in VSMC and cardiomyocytes are normally predominantly occupied by cortisol in tonic inhibitory mode. Blockade of 11β hydroxysteroid dehydrogenase type II (11βHSD2) or ROS generation both serve to activate cortisol–MR complexes, thus mimicking the effects of mineralocorticoid/salt imbalance on blood vessels and the heart. In RALES and EPHESUS, it is likely that the antagonists are blocking normal levels of cortisol, not aldosterone, from activating MR in the context of tissue damage and ROS generation. If this is the case, MR antagonists may be of wide therapeutic potential in cardiovascular disease and not confined to those characterized by aldosterone/salt excess. Finally, the pathophysiologic roles of always-occupied MR in ‘unprotected’ tissues such as cardiomyocytes or neurons in response to altered intracellular redox status remain to be explored.  相似文献   


8.
Luo W  Meng Y  Ji HL  Pan CQ  Huang S  Yu CH  Xiao LM  Cui K  Ni SY  Zhang ZS  Li X 《PloS one》2012,7(3):e34230

Objective

Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS), has been suggested to mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to investigate the role of spionolactone on liver cirrhosis and portal hypertension.

Methods

Liver cirrhosis was induced by bile duct ligation (BDL). Spironolactone was administered orally (20 mg/kg/d) after bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson''s trichrome staining, and the measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha smooth muscle actin (α-SMA) expression. Protein expressions and protein phosphorylation were determined by immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase chain reaction (Q-PCR). Portal pressure and intrahepatic resistance were examined in vivo.

Results

Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of proinflammatory cytokines (TNFα and IL-6). Additionally, spironolactone significantly decreased ROCK-2 activity without affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS and the activity of NO effector- protein kinase G (PKG) in the liver.

Conclusion

Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy might be the optional therapy in cirrhosis and portal hypertension.  相似文献   

9.

Context

Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing''s syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1), or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR).

Objective and Methods

In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone.

Results

In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa.

Conclusion

Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may serve to limit hepatic inflammation.  相似文献   

10.
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.  相似文献   

11.
We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents) to active cortisol (corticosterone) in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX) and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.  相似文献   

12.
Mineralocorticoid receptor (MR) activation in renal epithelial cells in response to the binding of aldosterone has long been implicated in the maintenance of body salt and fluid homeostasis and blood pressure control. 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is believed to confer specificity on aldosterone to activate MR by inactivating 11β-hydroxyglucocorticoids (corticosterone, cortisol) that are 100-1000 times more abundant in plasma than aldosterone and that can also bind and activate MR. Increasing evidence, however, challenges such a simple view of MR activation as well as its interaction with glucocorticoids and 11β-HSDs. In non-epithelial tissues including brain, cardiomyocytes and macrophages, 11β-hydroxyglucocorticoids seem to act as MR antagonists, and redox changes and signaling events may play pivotal roles for receptor activation in these tissues. This review addresses the emerging new view of the complex mechanisms underlying MR specificity of action, with a diversity of physiological roles and functions in different mineralocorticoid-responsive tissues.  相似文献   

13.
Aldosterone plays a pathological role in cardiac fibrosis by directly affecting cardiac fibroblasts. Understanding of the cellular mechanisms of aldosterone action in cardiac fibroblasts, however, is rudimentary. One possibility is that aldosterone promotes proliferation of cardiac fibroblasts by activating specific cellular signaling cascades. The current study tests whether aldosterone stimulates proliferation of isolated adult rat cardiac myofibroblasts (RCF) by activating Kirsten Ras (Ki-RasA) and its effector, the MAPK1/2 cascade. Aldosterone (10 nM) significantly increased RCF proliferation. This action was sensitive to the mineralocorticoid receptor (MR) antagonist spironolactone. Expression of MR in RCF and the whole rat heart was confirmed by immunoblotting. Aldosterone significantly increased absolute and active (GTP bound) Ki-RasA levels in RCF. Aldosterone, in addition, significantly increased phospho-c-Raf and phospho-MAPK1/2. The effects of aldosterone on Ki-RasA and phospho-c-Raf proteins were inhibited by spironolactone but not RU-486, suggesting that aldosterone acts via MR. Inhibitors of MEK1/2 and c-Raf prevented aldosterone-induced activation of MAPK1/2 and proliferation. These results show that aldosterone directly increases RCF proliferation through MR-dependent activation of Ki-RasA and its effector, the MAPK1/2 cascade. Activation of cardiac fibroblasts through such a cascade may play a role in the pathological actions exerted by aldosterone on the heart.  相似文献   

14.
The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (−)-Epigallocatechin gallate (EGCG) revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM). Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its polyphenolic compounds may be attributed to an inhibition of the cortisol producing enzyme 11β-HSD1.  相似文献   

15.

Background

Impaired corticosteroid action caused by genetic and environmental influence, including exposure to hazardous xenobiotics, contributes to the development and progression of metabolic diseases, cardiovascular complications and immune disorders. Novel strategies are thus needed for identifying xenobiotics that interfere with corticosteroid homeostasis. 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) and mineralocorticoid receptors (MR) are major regulators of corticosteroid action. 11β-HSD2 converts the active glucocorticoid cortisol to the inactive cortisone and protects MR from activation by glucocorticoids. 11β-HSD2 has also an essential role in the placenta to protect the fetus from high maternal cortisol concentrations.

Methods and Principal Findings

We employed a previously constructed 3D-structural library of chemicals with proven and suspected endocrine disrupting effects for virtual screening using a chemical feature-based 11β-HSD pharmacophore. We tested several in silico predicted chemicals in a 11β-HSD2 bioassay. The identified antibiotic lasalocid and the silane-coupling agent AB110873 were found to concentration-dependently inhibit 11β-HSD2. Moreover, the silane AB110873 was shown to activate MR and stimulate mitochondrial ROS generation and the production of the proinflammatory cytokine interleukin-6 (IL-6). Finally, we constructed a MR pharmacophore, which successfully identified the silane AB110873.

Conclusions

Screening of virtual chemical structure libraries can facilitate the identification of xenobiotics inhibiting 11β-HSD2 and/or activating MR. Lasalocid and AB110873 belong to new classes of 11β-HSD2 inhibitors. The silane AB110873 represents to the best of our knowledge the first industrial chemical shown to activate MR. Furthermore, the MR pharmacophore can now be used for future screening purposes.  相似文献   

16.
IntroductionRhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models.ResultsDownregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker α-sm-actin, but increased certain fibrosis-associated factors like TGF-β and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues.ConclusionRhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue.  相似文献   

17.
Glycyrrhizin (GL) is a widely used food additive which can cause severe pseudoaldosteronism at high doses or after a long period of consumption. The aim of the present study was to develop a physiologically based pharmacokinetic (PBPK) pharmacodynamic (PD) model for GL-induced pseudoaldosteronism to improve the safe use of GL. Since the major metabolite of GL, glycyrrhetic acid (GA), is largely responsible for pseudoaldosteronism via inhibition of the kidney enzyme 11β-hydroxysteroiddehydrogenase 2 (11β-HSD 2), a semi-PBPK model was first developed in rat to predict the systemic pharmacokinetics of and the kidney exposure to GA. A human PBPK model was then developed using parameters either from the rat model or from in vitro studies in combination with essential scaling factors. Kidney exposure to GA was further linked to an Imax model in the 11β-HSD 2 module of the PD model to predict the urinary excretion of cortisol and cortisone. Subsequently, activation of the mineralocorticoid receptor in the renin-angiotensin-aldosterone-electrolyte system was associated with an increased cortisol level. Experimental data for various scenarios were used to optimize and validate the model which was finally able to predict the plasma levels of angiotensin II, aldosterone, potassium and sodium. The Monte Carlo method was applied to predict the probability distribution of the individual dose limits of GL causing pseudoaldosteronism in the elderly according to the distribution of sensitivity factors using serum potassium as an indicator. The critical value of the dose limit was found to be 101 mg with a probability of 3.07%.  相似文献   

18.
An IHC survey using several monoclonal antibodies against different portions of the rat mineralocorticoid receptor (MR) molecule demonstrated significant specific MR immunoreactivity in the ovary, prompting further study of the localization of MR and of determinants of extrinsic MR ligand specificity, 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2, and hexose-6-phosphate dehydrogenase (H6PDH). MR expression (real-time RT-PCR and Western blot) did not differ significantly in whole rat ovaries at early diestrus, late diestrus, estrus, and a few hours after ovulation. MR immunostaining was most intense in corporal lutea cells, light to moderate in oocytes and granulosa cells, and least intense in theca cells. Light immunoreactivity for 11β-HSD2 occurred in most cells, with some mural granulosa cells of mature follicles staining more strongly. The distribution of immunoreactivity for 11β-HSD1 and H6PDH required to generate NADPH, the cofactor required for reductase activity of 11β-HSD1, was similar, with the most-intense staining in the cytoplasm of corporal lutea and theca cells and light or no staining in the granulosa and oocytes. MR function in the ovary is as yet unclear, but distinct patterns of distribution of 11β-HSD1 and -2 and H6PDH suggest that the ligand for MR activation in different cells of the ovary may be differentially regulated. (J Histochem Cytochem 57:633–641, 2009)  相似文献   

19.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

20.
Glucocorticoids are essential participants in the regulation of lipid metabolism. On a tissue-specific level, glucocorticoid signal is controlled by 11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1). Up-regulation of 11β-HSD1 expression during non-alcoholic fatty liver disease (NAFLD) has been previously shown, while 11β-HSD1 inhibition has been shown to reduce hepatic lipids in NAFLD, but the underlying mechanisms remain unclear. Here, in this study, we created in vitro cell culture and in vivo transgenic hepatocyte-specific 11β-HSD1 mouse models of NAFLD to determine the regulatory mechanisms of 11β-HSD1 during lipid metabolism dysfunction. We found that 11β-HSD1 overexpression activated glucocorticoid receptors and promoted their nuclear translocation, and then stimulating gp78. The induction of gp78 sharply reduced expression of Insig2, but not Insig1, which led to up-regulation of lipogenesis regulatory proteins including SREBP1, FAS, SCD1, and ACC1. Our results suggested that overexpression of 11β-HSD1 induced lipid accumulation, at least partially through the GR/gp78/Insig2/SREBP1 pathway, which may serve as a potential diagnostic and therapeutic target for treatment of NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号