首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in cultures of quail neural crest cells. Cells corresponding phenotypically to sympathetic neurons and pheochromocytes can be identified in neural crest cell cultures after 5-6 days in vitro. Expression of the A2B5 antigen precedes expression of immunocytochemically detectable levels of tyrosine hydroxylase in cultured neural crest cells. Glucocorticoid treatment decreases the proportion of TH+ neural crest cells that express neuronal traits. We conclude that environmental cues normally encountered by sympathoadrenal precursors in vivo can influence the differentiation of a subpopulation of cultured neural crest cells in the sympathoadrenal lineage.  相似文献   

2.
In the avian embryo, somatostatin-like immunoreactivity (SLI) and adrenergic characteristics appear virtually simultaneously in the developing sympathetic nervous system and adrenal medulla. We have used double-labeling techniques to show that both properties coexist in the same cells. In the quail, not only do all somatostatin-containing cells in the adrenosympathetic system exhibit tyrosine hydroxylase immunoreactivity and possess catecholamines (CA), but this coexistence of the peptidergic and adrenergic phenotypes is already present very early in ontogeny. However, not all adrenergic cells express SLI. The development of sympathoadrenal precursors can be followed in vitro. Adrenergic precursor cells, obtained from the migrating neural crest, differentiate in culture into neuron-like cells that contain SLI and CA. This coexpression can be regulated by the same factors. For instance, corticosterone and progesterone increase SLI content and CA production in the neural crest cell cultures. The ontogeny of the autonomic lineage is discussed in the light of these results.  相似文献   

3.
Genomic analysis of neural crest induction   总被引:3,自引:0,他引:3  
The vertebrate neural crest is a migratory stem cell population that arises within the central nervous system. Here, we combine embryological techniques with array technology to describe 83 genes that provide the first gene expression profile of a newly induced neural crest cell. This profile contains numerous novel markers of neural crest precursors and reveals previously unrecognized similarities between neural crest cells and endothelial cells, another migratory cell population. We have performed a secondary screen using in situ hybridization that allows us to extract temporal information and reconstruct the progression of neural crest gene expression as these cells become different from their neighbors and migrate. Our results reveal a sequential 'migration activation' process that reflects stages in the transition to a migratory neural crest cell and suggests that migratory potential is established in a pool of cells from which a subset are activated to migrate.  相似文献   

4.
In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation.In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.  相似文献   

5.
Under the influence of environmental factors, the neural crest gives rise to numerous cell types and is therefore, by definition, a pluripotential structure. However, it was not clear until recently to what extent each individual neural crest cell possessed multiple capacities for differentiation. As a result of in vivo and in vitro approaches aimed at solving this problem, it has become apparent that the neural crest is made up of cells in different states of determination and that some lineages are segregated very early. In particular, analysis of clones obtained from single cells grown in culture has shown that, although many individual neural crest cells are pluripotential to varying degrees, others are apparently committed to give rise to only one derivative. The role of the embryonic microenvironment in the emergence of phenotypic diversity is probably complex, certain factors acting to promote the survival of selected subpopulations of fully determined progenitors, while others may direct partly committed precursors towards a specific developmental fate.  相似文献   

6.
Neural crest, taken from cephalic and trunk levels of quail embryos, was grown in vitro in conventional tissue culture medium (Dulbecco's modified Eagle's medium containing 15% fetal calf serum and either 2 or 15% chick embryo extract (CEE] or in a chemically defined serum- and CEE-free medium. Depending on the conditions employed, different types of neuronal or neuronlike cells developed in the cultures. Thus, in medium containing 15% CEE, adrenergic cells (identified by tyrosine hydroxylase immunoreactivity and catecholamine histofluorescence) emerged after 5-6 days. These cells lacked tetanus toxin binding sites and did not react with an antibody directed against 70-kDa neurofilament protein. In the fully defined medium, a neuronal cell type exhibiting neurofilament and substance P (SP) immunoreactivity differentiated from noncycling precursors within 1 or 2 days of culture. If serum was added to the medium, the neurites disintegrated and the neuronal cells ultimately died. By sequentially culturing neural crest, first in the wholly synthetic medium for 1-3 days and then in the conventional medium supplemented with serum and 15% CEE, the disappearance of the SP-positive neurons was followed, several days later, by the emergence of adrenergic cells. The majority of these cells and/or their precursors were found to undergo cell division in culture. We conclude that the cells expressing the adrenergic phenotype (characteristic of the sympathetic nervous system) and those displaying SP immunoreactivity, comparable to a category of neurons in dorsal root and cranial sensory ganglia, derive from distinct sets of precursors. Our results reinforce the contention, deduced from in ovo transplantation experiments (see N. M. Le Douarin, (1984) In Cellular and Molecular Biology of Neuronal Development (I. Black, Ed.), pp. 3-28. Plenum, New York), that at least two lineages, from which sensory and autonomic cell types are derived respectively, are segregated early during neural crest ontogeny and have extremely different survival and trophic requirements.  相似文献   

7.
Neural crest cells are a migratory population that forms most of the peripheral nervous system, facial skeleton, and numerous other derivatives. These cells arise from the neural ectoderm and are first recognizable as discrete cells after neural tube closure. In this review, I summarize the results of studies from our laboratory on neural crest cell lineage and origin. Our recent experiments demonstrate that interactions between the presumptive neural plate and the nonneural ectoderm are likely to be instrumental in the induction of the avian neural crest. Juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. However, neural crest cells do not appear to be segregated from other neuroepithelial cells; cell lineage studies have demonstrated that individual precursor cells within the neural tube can give rise to both neural crest and neural tube derivatives as diverse as sensory, commissural, and motor neurons. This suggests that individual neuroectodermal cells are multipotent, such that a precursor within the neural tube has the ability to form both neural tube (central nervous system) and neural crest (peripheral nervous system and other) derivatives. Further support for flexibility in the developmental program of neuroepithelial cells comes from experiments in which the cranial neural folds are ablated; this results in regulation by the remaining ventral neural tube cells to form neural crest cells after the endogenous neural crest is removed. At later stage of development, this regulative capacity is lost. Following their emigration from the neural tube, neural crest cells become progressively restricted to defined embryonic states. Taken together, these experiments demonstrate that: (1) the neural crest is an induced population that arises by interactions within the ectoderm; (2) initially, progenitor cells are multipotent, having the potential to form multiple neural crest and neural tube derivatives; and (3) with time, the precursors become progressively restricted to form neural crest derivatives and eventually to individual phenotypes.  相似文献   

8.
Neural retinas of 6-day-old chick embryos synthesize DNA and are able to carry out DNA excision repair. However, in contrast to the situation in human cells, the maximum rate of repair induced by N-acetoxy acetylaminofluorene (AAAF) is no greater than that induced by methyl methanesulfonate (MMS). With advancing differentiation of the retina in the embryo, cell multiplication and DNA synthesis decline and cease, and concurrently the cells lose the ability to carry out DNA excision repair. Thus, in 15-16-day embryos, in which the level of DNA synthesis is very low, DNA repair is barely detectable. If retinas from 14-day embryos are dissociated with trypsin and the cell suspension is plated in growth- promoting medium, DNA synthesis is reinitiated; however, in these cultures there is no detectable repair of MMS-induced damage, and only low levels of repair are observed after treatment with AAAF. A cell line was produced, by repeated passaging of these cultures, in which the cell population reached a steady state of DNA replication. However, the cell population remained deficient in the ability to repair MMS-induced damage. This cell line most likely predominantly comprises cells of retino-glial origin. Possible correlations between deficiency in DNA repair mechanisms in replicating cells and carcinogenesis in neural tissues are discussed.  相似文献   

9.
Neural crest cells migrate along two pathways in the trunk: the ventral path, between the neural tube and somite, and the dorsolateral path, between the somite and overlying ectoderm. In avian embryos, ventral migration precedes dorsolateral migration by nearly 24 h, and the onset of dorsolateral migration coincides with the cessation of ventral migration. Neural crest cells in the ventral path differentiate predominantly as neurons and glial cells of the peripheral nervous system, whereas those in the dorsolateral path give rise to the melanocytes of the skin. Thus, early- and late-migrating neural crest cells exhibit unique morphogenetic behaviors and give rise to different subsets of neural crest derivatives. Here we present evidence that these differences reflect the appearance of specified melanocyte precursors, or melanoblasts, from late- but not early-migrating neural crest cells. We demonstrate that serum from Smyth line (SL) chickens specifically immunolabels melanocyte precursors, or melanoblasts. Using SL serum as a marker, we first detect melanoblasts immediately dorsal and lateral to the neural tube beginning at stage 18, which is prior to the onset of dorsolateral migration. At later stages every neural crest cell in the dorsolateral path is SL-positive, demonstrating that only melanoblasts migrate dorsolaterally. Thus, melanoblast specification precedes dorsolateral migration, and only melanoblasts migrate dorsolaterally at the thoracic level. Together with previous work (Erickson, C. A., and Goins, T. L.,Development121, 915–924, 1995), these data argue that specification as a melanoblast is a prerequisite for dorsolateral migration. This conclusion suggested that the delay in dorsolateral migration (relative to ventral migration) may reflect a delay in the emigration of melanogenic neural crest cells from the neural tube. Several experiments support this hypothesis. There are no melanoblasts in the ventral path, as revealed by the absence of SL-positive cells in the ventral path, and neural crest cells isolated from the ventral path do not give rise to melanocytes when explanted in culture, suggesting that early, ventrally migrating neural crest cells are limited in their ability to differentiate as melanocytes. Similarly, neural crest cells that emigrate from the neural tubein vitroduring the first 6 h fail to give rise to any melanocytes or SL-positive melanoblasts, whereas neural crest cells that emigrate at progressively later times show a dramatic increase in melanogenesis under identical culture conditions. Thus, the timing of dorsolateral migration at the thoracic level is ultimately controlled by the late emigration of melanogenic neural crest cells from the neural tube.  相似文献   

10.
By grafting ganglia from embryonic quails into the neural crest migration pathway of 2-day chick embryos, it was previously demonstrated that all type of ganglia possess more developmental potentialities than those normally expressed in the normal course of development. Namely autonomic neurones with catecholamine and adrenomedullary cells can be obtained from grafted spinal ganglia. The latter also yield sensory neurons to the host dorsal root ganglia (DRG) but only if they are taken from the donor before 8 days of incubation. In the present article we show that the capacity to differentiate sensory neurons in back-transplantation experiments can be correlated with the presence in the donor DRG of cycling neuronal precursors. Once all the neurons have been withdrawn from the cell cycle - an event which occurs first in the mediodorsal and then in the lateroventral area of the ganglion - the DRG cell population gives rise exclusively to autonomic ganglion cells in the host. It is concluded that in the conditions of the back-transplantation experiments, the postmitotic neurons contained in the donor ganglion do not survive. Therefore, the neurons and paraganglion cells which differentiate in the host arise from still undifferentiated precursor cells. This indicates that besides sensory neuron precursors the embryonic DRG cell population also contains precursor cells for the autonomic differentiation pathway.  相似文献   

11.
Here we review recent data on molecular aspects of the differentiation of the noradrenergic neurotransmitter phenotype in postganglionic sympathetic neurons during avian and mammalian embryogenesis. By experimental manipulation of the chick embryo, it has been shown that neural tube and notochord are important for noradrenergic differentiation which occurs when migrating neural crest cells, the precursors of sympathetic ganglion cells, reach the dorsal aorta. Bone morphogenetic proteins expressed in the dorsal aorta before and during the time of noradrenergic differentiation are likely candidates for growth factors involved in induction of noradrenergic differentiation in vivo. To analyze noradrenergic differentiation, enzymes of the noradrenaline biosynthesis pathway and catecholamine stores have been used as differentiation markers. The molecules involved in neurotransmitter release which are as important for a functional noradrenergic neuron as those required for transmitter synthesis and storage are only recently being studied in this context. For a comprehensive view of the embryonic development of the noradrenergic neurotransmitter phenotype, it will be necessary to understand how the systems for synthesis, storage and release of noradrenaline are assembled during neuronal differentiation. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

12.
Both neurons and glia of the PNS are derived from the neural crest. In this study, we have examined the potential function of lunatic fringe in neural tube and trunk neural crest development by gain-of-function analysis during early stages of nervous system formation. Normally lunatic fringe is expressed in three broad bands within the neural tube, and is most prominent in the dorsal neural tube containing neural crest precursors. Using retrovirally-mediated gene transfer, we find that excess lunatic fringe in the neural tube increases the numbers of neural crest cells in the migratory stream via an apparent increase in cell proliferation. In addition, lunatic fringe augments the numbers of neurons and upregulates Delta-1 expression. The results indicate that, by modulating Notch/Delta signaling, lunatic fringe not only increases cell division of neural crest precursors, but also increases the numbers of neurons in the trunk neural crest.  相似文献   

13.
Clonal and lineage analyses have demonstrated that although some neural crest cells have the ability to generate multiple cell types and display self-renewal ability, other crest cells generate a single or limited repertoire of cell types. However, it is not yet clear when, and in what order, crest cells become specified to adopt a particular fate. We report that the receptor tyrosine kinases TrkC and C-Kit are expressed by distinct neural crest subpopulations in vitro. We then analyzed the lineages of individual receptor-expressing crest cells and found that TrkC-expressing cells that have just emerged from the neural tube give rise to clones containing neurons or glial cells, or both, but never produce melanocytes. A short time later, TrkC-expressing cells only generate pure neuronal clones. By contrast, from their earliest appearance in neural tube outgrowths, C-Kit-expressing cells invariably give rise to clones containing only melanocytes. Our results directly demonstrate that distinct neurogenic and melanogenic sublineages diverge before or soon after crest cells emerge from the neural tube, that fate-restricted precursors are present in nascent neural crest populations and that these sublineages can be distinguished by their cell type-specific expression of receptor tyrosine kinases.  相似文献   

14.
In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head.  相似文献   

15.
Migration of cardiac neural crest cells in Splotch embryos   总被引:13,自引:0,他引:13  
  相似文献   

16.
The early steps of neural crest development.   总被引:2,自引:0,他引:2  
The neural crest is an intriguing cell population that gives rise to many derivatives which are all generated far from their final destinations. From its induction to the delamination of the cells, multiple signalling pathways converge to regulate the expression of effector genes, the products of which endow the cells with invasive and migratory properties reminiscent of those displayed by malignant cells in tumours. As such, the neural crest constitutes an excellent model to study cell migration.  相似文献   

17.
18.
This article addresses the problem of the segregation of cell lines during the development of peripheral nervous system components from the neural crest. We show here that committed precursors of peripheral neurons are present in the crest before the migration of its cells has started. If cultured in a serum-deprived medium, a subpopulation of the crest cells readily differentiates into neurons without dividing. Neuronal markers such as neurofilament proteins and receptor sites for tetanus toxin are not expressed in the committed neuronal precursors, but appear after a few hours in culture. They are coexpressed in neurons with the mesenchymal intermediate filament protein, vimentin, which is common to all neural crest cells regardless of their prospective fate. A strong inhibitory effect of serum factor(s) on neurite outgrowth is demonstrated. We show also that conditions stimulating proliferation of crest cells are incompatible with promotion of neuronal differentiation and vice-versa.  相似文献   

19.
We devised a unique new single‐cell cloning method which uses microscope cover glasses and established a melanoblast cell line derived from mouse neural crest cells. A microscope cover glass was nicked and broken into small pieces and put on a dish. Culture medium and a suspension of 20–30 cells/ml were dropped in the dish. After 1–3 d, a piece of glass to which only one cell was adhered was picked up and transferred to another dish containing culture medium. The greatest advantage of this method is that the derivation of a colony from a single cell can be directly confirmed by microscopy and there is no risk of migratory cells being contaminated by other colonies. Using this single‐cell cloning method, in this study we established a cell line derived from a neural crest cell line (NCC‐S4.1) and designated it as NCCmelb4. When the culture medium was supplemented with stem cell factor (SCF) alone, NCCmelb4 cells were KIT‐positive and tyrosinase‐negative melanocyte precursors; they remained at an immature and undifferentiated stage. When the medium was supplemented with phorbol 12‐o‐tetradecanoyl‐13‐acetate (TPA) + cholera toxin (CT), the cell morphology changed and became l ‐3,4‐dihydroxyphenylalanine (DOPA)‐positive. This observation indicates that the NCCmelb4 cells are capable of further differentiation with suitable stimulation. NCCmelb4 cells derived from the mouse neural crest has characteristics of melanocyte precursors (melanoblasts), and is a cell line which can be utilized to study differentiation‐inducing factors and growth factors without the effects of feeder cells.  相似文献   

20.
Delamination of premigratory neural crest cells from the dorsal neural tube depends both upon environmental signals and cell-intrinsic mechanisms and is a prerequisite for cells to engage in migration. Here we show that avian neural crest cells synchronously emigrate from the neural tube in the S phase of the cell cycle. Furthermore, specific inhibition of the transition from G1 to S both in ovo and in explants blocks delamination, whereas arrest at the S or G2 phases has no immediate effect. Thus, the events taking place during G1 that control the transition from G1 to S are necessary for the epithelial to mesenchymal conversion of crest precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号