共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of a restriction-modification system of the thermotolerant methylotroph Bacillus methanolicus.
下载免费PDF全文

We report the isolation of a restriction endonuclease, BmeTI, an isoschizomer of BclI, that recognizes the DNA sequence 5' TGATCA 3'. We also report that BmeTI sites are modified to TGm6ATCA. These findings provide the basis for devising strategies to prevent BmeTI restriction of any DNA introduced into Bacillus methanolicus. 相似文献
2.
Brautaset T Jakobsen M ØM Flickinger MC Valla S Ellingsen TE 《Journal of bacteriology》2004,186(5):1229-1238
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50 degrees C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs. 相似文献
3.
N Arfman L Dijkhuizen G Kirchhof W Ludwig K H Schleifer E S Bulygina K M Chumakov N I Govorukhina Y A Trotsenko D White 《International journal of systematic bacteriology》1992,42(3):439-445
The generic position of 14 strains of gram-positive bacteria able to use methanol as a growth substrate was determined. All are obligately aerobic, thermotolerant organisms that are able to grow at temperatures of 35 to 60 degrees C. Nine of the strains produce oval spores at a subterminal-to-central position in slightly swollen rod-shaped cells. DNA-DNA hybridization studies, 5S rRNA sequence analysis, and physiological characteristics revealed that all 14 strains cluster as a well-defined group and form a distinct new genospecies. Analysis of the 16S and 5S rRNA sequences indicated that this new species is distinct from Bacillus brevis but closely related to B. firmus and B. azotoformans. The name proposed for this new species is B. methanolicus. The type strain, PB1, has been deposited in the National Collection of Industrial and Marine Bacteria as NCIMB 13113. 相似文献
4.
Application of modern gene technology to strain improvement of the industrially important bacterium Bacillus amyloliquefaciens is reported. Several different plasmid constructions carrying the alpha-amylase gene (amyE) from B. amyloliquefaciens were amplified in this species either extrachromosomally or intrachromosomally. The amyE gene cloned on a pUB110-derived high copy plasmid pKTH10 directed the highest yields both in rich laboratory medium and in crude industrial medium. The alpha-amylase activity, when compared with the parental strain, was enhanced up to 20-fold in the pKTH 10 transformant. This strain showed decreased activities for other exoenzymes, such as proteases and beta-glucanase suggesting common limiting resources in the processing of these enzymes. Deletions were made in vitro in genes encoding neutral (nprE), alkaline (aprE) protease and beta-glucanase (bglA). The engineered genes were cloned into the thermosensitive plasmid pE194, and the resulting plasmids were used to replace the corresponding wild type chromosomal genes in B. amyloliquefaciens by integration-excision at non-permissive temperature. The double mutant deficient in the major proteases (delta nprE delta aprE) showed about a 2-fold further enhancement in alpha-amylase production in the industrial medium compared with the relevant wild type backgroud, both when plasmid-free and when transformed with pKTH10; this strain also produced elevated levels of the chromosomally-encoded beta-glucanase; pKTH10 was stably maintained both in the wild type strain and in the delta nprE delta aprE mutant. We suggest that the higher yields in alpha-amylase and beta-glucanase in the delta nprE delta aprE strain are primarily due to improved access to limiting resources, and that decreased proteolytic degradation may have had a secondary role in retaining the high activity obtained. 相似文献
5.
6.
Strain GB isolated from the maize rhizosphere is a gram-negative, aerobic, non-spore-forming, nonpigmented, nonmotile, chemolithotrophic,
facultatively methylotrophic bacterium. Cells are cocci or short rods. The strain does not require vitamins. Optimum growth
in a medium with methanol occurs at 38–42°C at pH 8.0–9.2. The doubling time is 12 h. In addition to methanol, the bacterium
can grow on methylamine, dimethylformamide, acetone, thiosulfate + NaHCO3, and in an atmosphere of H2 + CO2 + O2. Methanol and methylamine are oxidized by the respective dehydrogenases to CO2 via formaldehyde and formate, respectively. The CO2 produced is assimilated via the ribulose bisphosphate pathway. Fatty acids are dominated by cyclopropanoic (58–61%), palmitic
(24–26%), and octadecanoic (8–9%) acids. The main phospholipids are phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine.
The major ubiquinone is Q10. The bacterial genome contains genes controlling the synthesis and secretion of cytokinins. The culture liquid exhibits cytokinin
activity. The G+C content of DNA is 62.5 mol %, as determined from the DNA thermal denaturation temperature Tm). Strain GB shows a moderate degree of DNA-DNA homology (<40%) with the type representatives of the genusParacoccus. Based on the data obtained, the bacterium was classified as a new species of this genus, namedP. kondratievae. 相似文献
7.
8.
Strain GB isolated from the maize rhizosphere is a gram-negative, aerobic, non-spore-forming, nonpigmented, nonmotile, chemolithotrophic, facultatively methylotrophic bacterium. Cells are cocci or short rods. The strain does not require vitamins. Optimum growth in a medium with methanol occurs at 38-42 degrees C at pH 8.0-9.2. The doubling time is 12 h. In addition to methanol, the bacterium can grow on methylamine, dimethylformamide, acetone, thiosulfate + NaHCO3, and in an atmosphere of H2 + CO2 + O2. Methanol and methylamine are oxidized by the respective dehydrogenases to CO2 via formaldehyde and formate, respectively. The CO2 produced is assimilated via the ribulose bisphosphate pathway. Fatty acids are dominated by cyclopropanoic (58-61%), palmitic (24-26%), and octadecanoic (8-9%) acids. The main phospholipids are phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The major ubiquinone is Q10. The bacterial genome contains genes controlling the synthesis and secretion of cytokinins. The culture liquid exhibits cytokinin activity. The G + C content of DNA is 62.5 mol %, as determined from the DNA thermal denaturation temperature (Tm). Strain GB shows a moderate degree of DNA-DNA homology (< 40%) with the type representatives of the genus Paracoccus. Based on the data obtained, the bacterium was classified as a new species of this genus, named P. kondratievae. 相似文献
9.
Heggeset TM Krog A Balzer S Wentzel A Ellingsen TE Brautaset T 《Applied and environmental microbiology》2012,78(15):5170-5181
Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into L-lysine and L-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their L-glutamate production levels (406 mmol liter(-1) and 11 mmol liter(-1), respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for L-lysine and L-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol. 相似文献
10.
Komives CF Cheung LY Pluschkell SB Flickinger MC 《Journal of industrial microbiology & biotechnology》2005,32(2):61-66
Bacillus methanolicus has been proposed as a biocatalyst for the low cost production of commodity chemicals. The organism can use methanol as sole carbon and energy source, and it grows aerobically at elevated temperatures. Methanol can be made available from off-shore conversion of natural gas to methanol, through gas-to-liquid technology. Growth of the organism in seawater-based medium would further reduce the costs of chemical production performed near an off-shore natural gas source. The growth of strain PB1 (ATCC 51375) in shake flask experiments with trypticase soy broth medium showed minimal salt-inhibition at the concentration of NaCl in seawater. The ability of B. methanolicus PB1 to grow in Pacific Ocean water using methanol as a carbon and energy source was also tested. Following a simple adaptation procedure, PB1 was able to grow on methanol in semi-defined medium with 100% seawater with good growth yields and similar growth rates compared with those achieved on media prepared in deionized water. 相似文献
11.
Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. 总被引:1,自引:1,他引:1
下载免费PDF全文

The gene (mdh) coding for methanol dehydrogenase (MDH) of thermotolerant, methylotroph Bacillus methanolicus C1 has been cloned and sequenced. The deduced amino acid sequence of the mdh gene exhibited similarity to those of five other alcohol dehydrogenase (type III) enzymes, which are distinct from the long-chain zinc-containing (type I) or short-chain zinc-lacking (type II) enzymes. Highly efficient expression of the mdh gene in Escherichia coli was probably driven from its own promoter sequence. After purification of MDH from E. coli, the kinetic and biochemical properties of the enzyme were investigated. The physiological effect of MDH synthesis in E. coli and the role of conserved sequence patterns in type III alcohol dehydrogenases have been analyzed and are discussed. 相似文献
12.
Youran Li Dandan Niu Liang Zhang Zhengxiang Wang Guiyang Shi 《Journal of industrial microbiology & biotechnology》2013,40(5):437-446
A novel thermostable isoamylase, IAM, was purified to homogeneity from the newly isolated thermophilic bacterium Bacillus sp. CICIM 304. The purified monomeric protein with an estimated molecular mass of 100 kDa displayed its optimal temperature and pH at 70 °C and 6.0, respectively, with excellent thermostability between 30 and 70 °C and pH values from 5.5 to 9.0. Under the conditions of temperature 50 °C and pH 6.0, the K m and V max on glycogen were 0.403 ± 0.018 mg/mg and 0.018 ± 0.001 mg/(min mg), respectively. Gene encoding IAM, BsIam was identified from genomic DNA sequence with inverse PCRs. The open reading frame of the BsIam gene was 2,655 base pairs long and encoded a polypeptide of 885 amino acids with a calculated molecular mass of 101,155 Da. The deduced amino acid sequence of IAM shared less than 40 % homology with that of microbial isoamylase ever reported, which indicated it was a novel isoamylase. This enzyme showed its obvious superiority in the industrial starch conversion process. 相似文献
13.
Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. 相似文献
14.
L. Dijkhuizen W. Harder L. de Boer A. van Boven W. Clement S. Bron G. Venema 《Archives of microbiology》1984,139(4):311-318
The inability of Hyphomicrobium X to grow on compounds such as pyruvate and succinate is most likely due to the absence of a functional pyruvate dehydrogenase (PDH) complex. Further support for this was sought by studying the effect of the introduction of the Escherichia coli pdh genes in Hyphomicrobium X on the pattern of substrate utilization by the latter organism. These genes were cloned by in vivo techniques using the broad-host range conjugative plasmid RP4: :Mucts. Plasmid RP4 derivatives containing pdh genes were selected by their ability to complement a pyruvate dehydrogenase deletion mutant of E. coli, strain JRG746 recA (ace-1pd) 18. The plasmids thus obtained could be transferred through an intermediary host (C600 recA), selecting only for an antibiotic resistance coded for by RP4 and back into JRG746 or other E. coli pdh mutants, upon which they still conferred the wild type phenotype. Enzyme assays showed that the latter strains, when carrying plasmid RP4 pdh1 also possessed PDH complex activity. Conjugation between the auxotrophic E. coli JRG746 (RP4 pdh1) strain and Hyphomicrobium X on pyruvate minimal agar gave rise to progeny which, on the basis of its morphology (stalked bacteria), their ability to grow on C1-compounds and to denitrify (now also with pyruvate) were identified as hyphomicrobia. This Hyphomicrobium X transconjugant was also able to grow in minimal medium with succinate, but no other novel growth substrates have been identified so far. An analysis of protein extracts with 2-dimensional gel electrophoresis indicated that Hyphomicrobium X and JRG746 only synthesized all three components of the PDH complex when carrying plasmid RP4 pdh1. These results are compatible with the suggested significance of the lack of a functional PDH complex in wild type Hyphomicrobium X.Abbreviations PDH
pyruvate dehydrogenase
- TCA
tricarboxylic acid
Dedicated to Prof. H. G. Schlegel on the occasion of his 60th birthday 相似文献
15.
16.
The polymerase chain reaction (PCR) based random amplified polymorphic DNA (RAPD) assay, morphological, physiological, biochemical and antimicrobial susceptibility test methods have been evaluated for use in the taxonomy of isolated thermotolerant Bacillus from Jordanian hot springs, with specific reference to strains Geobacillus stearothermophilus (ATCC 12980), Bacillus circulans (ATCC 4513) and Bacillus sphaericus (ATCC 14577). A RAPD assay has been optimized and is able to discriminate between numerous thermotolerant Bacillus strains. RAPD-PCR was found to give reproducible thermotolerant Bacillus strains classification of DNA fingerprints for 14 strains including 3 reference strains. A study of 14 isolates and 3 reference strains, analyzing 53 phenotypic characters, resulted in their allocation to five major clusters at 60% similarity. Whereas at 80% similarity, twelve taxonomically distinct groups were evident. 相似文献
17.
Growth characteristics of a thermotolerant methylotrophic Bacillus sp. (NCIB 12522) in batch culture
Nader Al-Awadhi Thomas Egli Geoffrey Hamer 《Applied microbiology and biotechnology》1988,29(5):485-493
Summary This contribution deals with problems associated with the culture of a thermotolerant methylotrophic Bacillus sp. The results reported clearly demonstrate why conventional enrichment/isolation procedures have, in the past, failed to allow such microbes to assert themselves. The catastrophic effect of carbon substrate (methanol) exhaustion on such cultures is clearly evidenced, but the effects of other nutrient exhaustion or limitations are demonstrated to be markedly less stringent. The failure of such cultures to complete the sporulation process when growing on methanol has important consequences with respect to their survival characteristics. 相似文献
18.
19.
20.
A Bacillus sp. isolated from sediments of distillery unit was found to overproduce laccase when cultured in a synthetic media containing 1mM CuSO4 and 10% distillery spent wash as inducers along with 1% dextrose (w/v) and 0.1% tryptone (w/v) as additional carbon and nitrogen sources. The extracellular purified enzyme was highly thermostable with a calculated half-life of 23 min at 75°C. The optimal pH and temperature of the Bacillus sp. laccase were recorded to be 3.0 and 35°C, respectively. Sodium azide and solvents like methanol and acetonitrile completely inhibited enzyme activity. The average molecular weight of the purified enzyme as determined by SDS-PAGE and zymogam studies was around 70 kDa. Kinetic parameters were detected by using 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as substrate. At high ABTS concentrations (> 6 mM) a substrate inhibition phenomenon appeared and K M (0.60 mM), V max (983.00 U/min) values were determined. The polypeptide sequences showed significant similarity with Cudependent oxidoreductases through MALDI-TOF MS analysis. In addition, the crude Bacillus sp. laccase showed enormous potential for decolorization of various recalcitrant dyes. The apparent high stability of this enzyme makes it a good candidate for its possible application in biotechnology. 相似文献