首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Summary The effects of a high carbohydrate diet on the renal gluconeogenic and glycolytic capacities and on the activities of the main enzymes of the carbohydrate metabolism, fructose 1,6-bisphosphatase, phosphofructokinase and pyruvate kinase have been studied. These parameters have been analysed in two separate and isolated fractions of the renal tubule, the proximal convoluted (PCT) and the distal convoluted (DCT) zones. The results presented in this study show a rapid adaptation capacity of the kidney in response to the high amount of dietary carbohydrate, which are characterized by a decrease in the glucose production and fructose 1,6-bisphosphatase activity in the proximal tubules, and an increase in the glycolytic flux and phosphofructokinase and pyruvate kinase activities in the distal tubules. The changes in these enzyme activities took place only at subsaturating substrate concentrations and not at maximum velocity which suggest that they are probably due to an allosteric and/or covalent modifications and so, they are independent of variations in the cellular levels of the enzymes.  相似文献   

2.
Summary The adaptive response of renal metabolism of glucose was studied in isolated rat proximal and distal renal tubules after a high protein-low carbohydrate diet administration. This nutritional situation significantly stimulated the gluconeogenic activity in the renal proximal tubules (about 1.5 fold at 48 hours) due, in part, to a marked increase in the fructose 1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) activities. In this tubular fragment, FBPase activity increased only at subsaturating fructose 1,6-bisphosphate concentration (30% at 48 hours) which involved a significant decrease in the Km (31%) for its substrate without changes in the Vmax. This enzymatic behaviour is probably related to modifications in the activity of the enzyme already present in the renal cells. Proximal PEPCK activity progressively increased at all substrate concentrations (almost 2 fold at 48h of high protein diet) which brought about changes in Vmax without changes in Km. These changes are in agreement with variations in the cellular concentration of the enzyme. Neither gluconeogenesis nor the gluconeogenic enzymes changed in the distal fractions of the renal tubules. On the other hand, a high protein diet did not apparently modify the glycolytic ability in any fragment of the nephron, although a significant increase in the phosphofructokinase (PFK) and pyruvate kinase (PK) activities was found in the distal renal tubules. This short term regulation involved a significant decrease from 24 hours in the Km value of distal PFK (almost 40%) without changes in Vmax. The kinetic behaviour of distal PK was mixed. In the first 24h after high protein diet a significant decrease in the Km for phosphoenolpyruvate was found (30%) without variation in the Vmax, however during the second 24 hours the activity of this glycolytic enzyme increased significantly (almost 1.3 fold) without modifications in its Km value. On the contrary, this nutritional state did not modify the kinetic behaviour of any glycolytic enzyme in the proximal regions of the renal tubules.  相似文献   

3.
Summary The influence of starvation on renal carbohydrate metabolism was studied in the proximal and distal fragments of the nephron. Starvation induced a double and opposite adaptation mechanism in both fractions of the renal tubule. In renal proximal tubules, the gluconeogenic flux was stimulated progressively during a period of 48 hours of starvation (2.15 fold), due, in part, to a significant increase in the fructose 1,6-bisphosphatase and phosphoenolpyruvate carboxykinase activities although with different characteristics. Fructose 1,6-bisphosphatase activity from this tubular fragment increased only at subsaturating subtrate concentration (68%) which involved a significant decrease in the Km (35%) for fructose 1,6-bisphosphate while there was no change in Vmax. This behaviour clearly indicates that it is related to modifications in the activity of the preexistent enzyme in the cell. Proximal phosphoenolpyruvate carboxykinase activity increased proportionally at both substrate concentrations (86 and 89% respectively) which brought about changes in Vmax without changes in Kin, all of which are in accordance with variations in the cellular levels of the enzyme. In the renal distal tubules, the glycolytic capacity drastically decreased throughout the starvation time. At 48 hours 65% of inhibition was shown. We have found a short term regulation of phosphofructokinase activity by starvation which involves an increase in Km (2.2 fold) without changes in Vmax, as a result of these kinetic changes, an inactivation of phosphofructokinase was detected at subsaturating concentration of fructose 6-phosphate. On the contrary, this nutritional state did not modify the kinetic behaviour of renal pyruvate kinase. Finally, neither proximal glycolytic nor distal gluconeogenic capacities and related enzymes activities were changed during starvation.  相似文献   

4.
We have studied the effects of several different macronutrients on the kinetic behaviour of rat renal glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). Rats were meal-fed with high-carbohydrate/low-protein, high-protein/low-carbohydrate and high-fat diets. High-protein increased renal G6PDH and 6PDGH activities by 66 per cent and 70 per cent respectively, without significantly changing the Km values of either and each Hexose monophosphate dehydrogenase activity increased steadily, reaching a significant difference on day 4. A rise in carbohydrate or fat in the diets, produced no significant change in either the activity or the kinetic parameters, Vmax and Km of the two dehydrogenases. In addition, the administration of a high-protein diet for 8 days significantly increased both the pentose phosphate pathway flux (92.6 per cent) and the kidney weigth (35 per cent), whereas no significant changes in these parameters were found when the animals were treated with the other diets. Our results suggest that an increase in the levels of dietary protein induces a rise in the intracellular levels of these enzymes. The possible role of this metabolic pathway in the kidneys under these nutritional conditions is also discussed.  相似文献   

5.
ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleon in ASH and analyzed intracellular Ca(2+) responses following stimulation with chemical repellents, osmotic shock and nose touch. We found that a variety of noxious stimuli evoked strong responses in ASH including quinine, denatonium, detergents, heavy metals, both hyper- and hypo-osmotic shock and nose touch. We observed that repeated chemical stimulation led to a reversible reduction in the magnitude of the sensory response, indicating that adaptation occurs within the ASH sensory neuron. A key component of ASH adaptation is GPC-1, a G-protein gamma-subunit expressed specifically in chemosensory neurons. We hypothesize that G-protein gamma-subunit heterogeneity provides a mechanism for repellent-specific adaptation, which could facilitate discrimination of a variety of repellents by these polymodal sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号