首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The absorption spectra of the hydroxycyclohexadienyl radicals formed upon the addition of OH radicals to six substrates for phenol hydroxylase have been determined using pulse radiolysis. Combining the radical spectra of thiophenol (lambda max, 390 nm; epsilon, 10,500 M-1 cm-1) and resorcinol (lambda max, 340 nm; epsilon, 4,100 M-1 cm-1) with their respective published spectra of enzyme-bound reduced flavin that is substituted in the C(4a) position of the dihydroflavin ring gave composite spectra that closely match the spectra formed concomitantly with the introduction of an oxygen atom into the substrates, the so-called Intermediate II species. A similar procedure for the substrates hydroquinone, 3-aminophenol, 3-chlorophenol, and 3-methylphenol yielded spectra that are also consistent with the known characteristics of their Intermediate II species. These spectral results give further support to the proposed biradical mechanism (Anderson, R.F., Patel, K. B., and Stratford, M. R. L. (1987) J. Biol. Chem. 262, 17475-17479) for the functioning of this class of flavoprotein hydroxylases.  相似文献   

2.
Combined optical and conductimetric measurements in aqueous solution indicate that at high pH (greater than or equal to 10).OH radicals react with the phenoxide form of 2,4-dihydroxybenzoic acid to form transiently phenoxyl radicals and a small amount of hydroxyeyclohexadienyl (HCHD) radicals by 150 ns. The respective yields of 88 and 12% of the total.OH radical yield were deduced from conductance and optical changes as well as from studies using a low potential reductant. The HCHD radical possesses a pKa of 8.0 +/- 0.1 and the constructed spectrum of the deprotonated forms of HCHD has a lambda max at 420 nm with a minimum extinction coefficient of approximately 7250 M-1 cm-1. The red shift in lambda max and increase in extinction coefficient compared to the revised spectral properties of the protonated form of the HCHD radical (lambda max at 390 nm with extinction coefficient of approximately 4500 M-1 cm-1), together with the pKa of the HCHD radical, provide an explanation for the pH-dependent spectral changes of the so-called highly absorbing intermediate II species, observed in the functioning of the enzyme p-hydroxybenzoate hydroxylase. These results add further to the evidence in support of the proposal that intermediate II is composed of species which absorb similarly to the flavin 4(a)-hydroxide and a form of the substrate/product such as the HCHD radical (Anderson, R. F., Patel, K. B., and Stratford, M. R. L. (1987) J. Biol. Chem. 262, 17475-17479).  相似文献   

3.
DPNH peroxidase is a flavin adenine dinucleotide-containing flavoprotein. Anaerobic titration of enzyme with dithionite has shown that the active site of the enzyme contains 2 mol of flavin and in addition 1 mol of a non-flavin electron acceptor that is tentatively identified as a disulfide group. Thus complete reduction of the enzyme requires 3 mol of dithionite per mole of active site. The first mole of dithionite reduces the non-flavin acceptor; complex formation between the reduced acceptor and one of the bound flavin molecules causes the formation of a long wavelength absorption band between 500 and 670 nm. The second mole of dithionite reduces the flavin that interacts with the reduced non-flavin group, and the long wavelength band disappears. The third mole of dithionite reduces the second mole of flavin. All groups are reoxidized in the presence of air. DPNH reacts with only two of the enzyme-bound electron acceptors. The first mole of DPNH reduces the non-flavin group to form an intermediate (I) that is almost identical with that formed by dithionite. The second mole of DPNH complexes with the second flavin of Intermediate I to form Intermediate II. This reaction causes a further absorbance increase in the long wavelength region; the tail of the absorption band now extends to 960 nm. The titration data (potassium phosphate, 0.05 M, pH 7.0) can be fitted with dissociation constants of 1 times 10-7 M for the formation of I, and 3 times 10-6 M for the conversion of I to II. In air, species II is oxidized to I; I is stable in air, but is oxidized stoichiometrically to oxidized enzyme by H2O2. Present evidence suggests that bound DPN-plus is responsible for the air stability of species I. Intermediate I, but not oxidized enzyme, reacts slowly with phenylmercuric acetate. This reaction causes loss of the air-stable intermediate and parallel loss in enzyme activity. The inactive enzyme cannot be reduced by DPNH to Species I; DPNH can, however, still react with the second flavin to form the autoxidizable complex. With other methods of enzyme inactivation there is also a direct correlation between residual enzyme activity and the ability of enzyme to form the air-stable intermediate. It is concluded that the air-stable intermediate is an important catalytic species.  相似文献   

4.
A second ferredoxin protein was isolated from the thermophilic anaerobic bacterium Clostridium thermoaceticum and termed ferredoxin II. This ferredoxin was found to contain 7.9 +/- 0.3 iron atoms and 7.4 +/- 0.4 acid-labile sulfur atoms per mol of protein. Extrusion studies of the iron-sulfur centers showed the presence of two [Fe4-S4] centers per mol of protein and accounted for all of the iron present. The absorption spectrum was characterized by maxima at 390 nm (epsilon 390 = 30,400 M-1cm-1) and 280 nm (epsilon 280 = 41.400 M-1 cm-1) and by a shoulder at 300 nm. The ration of the absorbance of the pure protein at 390 nm to the absorbance at 280 nm was 0.74. Electron paramagnetic resonance data showed a weak signal in the oxidized state, and the reduced ferredoxin exhibited a spectrum typical of [Fe4-S4] clusters. Double integration of the reduced spectra showed that two electrons were necessary for the complete reduction of ferredoxin II. Amino histidine, and 1 arginine, and a molecular weight of 6,748 for the native protein. The ferredoxin is stable under anaerobic conditions for 60 min at 70 degrees C. The average oxidation-reduction potential for the two [Fe4-S4] centers was measured as -365 mV.  相似文献   

5.
The mitochondrial ferrochelatase activity has been studied in coupled rat liver mitochondria using deuteroporphyrin IX (incorporated into liposomes of lecithin) and Fe(III) or Co(II) as the substrates. 1. It was found that respiring mitochondria catalyze the insertion of Fe(II) and Co(II) into deuteroporphyrin. When Fe(III) was used as the metal donor, the reaction revealed an absolute requirement for a supply of reducing equivalents supported by the respiratory chain. 2. A close correlation was found between the disappearance of porphyrin and the formation of heme which allows an accurate estimate of the extinction coefficient for the porphyrin to heme conversion. The value deltae (mM-1 - cm-1) = 3.5 for the wavelength pair 498 509 nm, is considerably lower than previously reported. 3. The maximal rate of deuteroheme synthesis was found to be approx. 1 nM - min-1 - mg-1 of protein at 37 degrees C, PH 7.4 and optimal substrate concentrations, i.e. 75 muM Fe(III) and 50 muM deuteroporphyrin. 4. Provided the mitochondria are supplemented with an oxidizable substrate, the presence of oxygen has no effect on the rate of deuteroheme synthesis.  相似文献   

6.
The role of copper in pig kidney diamine oxidase has been probed by examining the effects of potential Cu(II) ligands on the spectroscopic and catalytic properties of the enzyme. In the presence of azide and thiocyanate, new absorption bands are evident at 410 nm (epsilon = 6300 M-1 cm-1) and 365 nm (epsilon = 3000 M-1 cm-1), respectively. These bands are assigned as ligand-to-metal charge-transfer transitions, N3-/SCN- leads to Cu(II). One anion/Cu(II) is coordinated in an equitorial position. Anion binding can be completely reversed by dialysis. The equilibrium constants for diamine oxidase-anion complex formation are 134 M-1 (N3-) and 55 M-1 (SCN-). Azide and thiocyanate are linear uncompetitive inhibitors with respect to the amine substrate when O2 is present at saturating concentrations. Taken together, the data are consistent with a functional role for Cu(II) in diamine oxidase catalysis.  相似文献   

7.
The spectra and kinetics of light-induced absorbance changes in the near-infrared region of subchloroplast fragments enriched by P700 were studied. An increase in absorbancy within the region of 725--900 nm upon illumination was characterized by a maximum around 810 nm and by "shoulders" around 760 and 870 nm. Similar effects of thermal inactivation and low temperatures on the duration of dark recovery of light-induced absorbance changes at 700 nm and within the region of 725--900 nm suggest that the absorbance changes in the near-infrared region are due to photooxidation of P700. The values of P700 differential extinction coefficients at 810 nm are 8,2.10(3) M-1.cm-1 for digitonin fragments and 7,7.10(3) M-1.cm-1 for fragments prepared with the use of diethyl ester. It was shown that the value of midpoint oxidation-reduction potential measured for the absorbance changes at 810 nm (+492 mv) is higher than that measured at 700 nm (+475 mv).  相似文献   

8.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

9.
The reactions of Fe(II)EDTA, Fe(II)DTPA, and Fe(II)HEDTA with hydrogen peroxide near neutral pH have been investigated. All these reactions have been assumed to proceed through an active intermediate, I1, (Formula: see text) where pac is one of the three polyaminocarboxylates mentioned above. I1, whether .OH radical or an iron complex, reacts with ethanol, formate, and other scavengers at rates relative to k2 that, with the exception of t-butanol and benzoate, are similar, but not identical, to those expected for the.OH radical. In contrast, at pH 3, in the absence of ligands the reaction of I1 with Fe2+ was inhibited by ethanol and t-butanol and the reactivity of I1 towards these two scavengers relative to ferrous ion is identical to that exhibited by the hydroxyl radical. When pac = HEDTA, the intermediate of the first reaction reacts with formate ion to form the ferrous HEDTA ligand radical complex, which is characterized by absorption maxima at 295 nm (epsilon = 2,640 M-1 cm-1) and 420 nm (epsilon = 620 M-1 cm-1). For the reaction of Fe(II)HEDTA with H2O2, the following mechanism is proposed: (Formula: see text) where k17 = 4.2 X 10(4) M-1 sec-1 and k19 = 5 +/- 0.2 sec-1.  相似文献   

10.
Phenol hydroxylase, an FAD-containing monooxygenase, catalyzes the conversion of substituted phenols to the corresponding catechol. Use of metapyrocatechase, capable of dioxygenation of several catechols to give highly absorbing products, permitted determination of the time course of product release from phenol hydroxylase. Product dissociated prior to complete reoxidation of the enzyme, most likely concomitant with formation of the 4a-hydroxyflavin species (intermediate III). Deuterated phenol and thiophenol exhibited no kinetic isotope effect during the oxidative half-reaction. Isotope effects of 1.7 to 3.7 were found with resorcinol for the conversion of the second intermediate to intermediate III. These effects limited the possible models for phenol hydroxylation. An attempt was made to distinguish whether the spectrum of intermediate II is due entirely to that of the flavin moiety of phenol hydroxylase or whether some radical intermediate form involved in the formation of catechol makes a significant visible contribution. Reduced native and 6-hydroxy-FAD phenol hydroxylase were reacted with oxygen and resorcinol in order to provide evidence for the identity of intermediate II.  相似文献   

11.
There have been several studies indicating that hydrolysis reactions of fatty acid esters catalyzed by lipases proceed through an acyl-enzyme intermediate typical of serine proteases. In particular, one careful kinetic study with the physiologically important enzyme lipoprotein lipase (LPL) is consistent with rate-limiting deacylation of such an intermediate. To observe the spectrum of acyl-enzyme and study the mechanism of LPL-catalyzed hydrolysis of substrate, we have used a variety of furylacryloyl substrates including 1,2-dipalmitoyl-3-[(beta-2-furylacryloyl)triacyl]glyceride (DPFATG) to study the intermediates formed during the hydrolysis reaction catalyzed by the enzyme. After isolation and characterization of the molecular weight of adipose LPL, we determined its extinction coefficient at 280 nm to quantitate the formation of any acyl-enzyme intermediate formed during substrate hydrolysis. We observed an intermediate at low pH during the enzyme-catalyzed hydrolysis of (furylacryloyl)imidazole. This intermediate builds early in the reaction when a substantial amount of substrate has hydrolyzed but no product, furylacrylate, has been formed. The acyl-enzyme has a lambda max = 305 nm and a molar extinction coefficient of 22,600 M-1 cm-1; these parameters are similar to those for furylacryloyl esters including the serine ester. These data provide the first spectral evidence for a serine acyl-enzyme in lipase-catalyzed reactions. The LPL hydrolysis reaction is base catalyzed, exhibiting two pKa values; the more acidic of these is 6.5, consistent with base catalysis by histidine. The biphasic rates for substrate disappearance or product appearance and the absence of leaving group effect indicate that deacylation of intermediate is rate limiting.  相似文献   

12.
The reaction of prostaglandin H synthase with prostaglandin G2, the physiological substrate for the peroxidase reaction, was examined by rapid reaction techniques at 1 degree C. Two spectral intermediates were observed and assigned to higher oxidation states of the enzymes. Intermediate I was formed within 20 ms in a bimolecular reaction between the enzyme and prostaglandin G2 with k1 = 1.4 x 10(7) M-1 s-1. From the resemblance to compound I of horseradish peroxidase, the structure of intermediate I was assigned to [(protoporphyrin IX)+.FeIVO]. Between 10 ms and 170 ms intermediate II was formed from intermediate I in a monomolecular reaction with k2 = 65 s-1. Intermediate II, spectrally very similar to compound II of horseradish peroxidase or complex ES of cytochrome-c peroxidase, was assigned to a two-electron oxidized state [(protoporphyrin IX)FeIVO] Tyr+. which was formed by an intramolecular electron transfer from tyrosine to the porphyrin-pi-cation radical of intermediate I. A reaction scheme for prostaglandin H synthase is proposed where the tyrosyl radical of intermediate II activates the cyclooxygenase reaction.  相似文献   

13.
A green manganese desferrioxamine complex is rapidly formed at room temperature upon stirring freshly precipitated manganese dioxide in a solution of the ligand. Spectral studies and low-temperature ESR indicate that this compound, which has been previously described as a manganese(III) complex, is better characterized as containing tetravalent manganese. The complex appears to form oligomers in solution. The extinction coefficient at 635 nm is 137 +/- 6 M-1 cm-1 (per manganese) at pH 7.8 and 88 +/- 4 M-1 s-1 at pH 6.6 after purification by chromatography. The superoxide dismutase activity was measured and compared to that of mononuclear manganese(III) 1,4,8,11-tetraazacyclodecane (cyclam). The catalytic rate constants for superoxide dismutase activity are 1.7 x 10(6) M-1 s-1 and 2.9 x 10(6) M-1 s-1 for the desferrioxamine and the cyclam complexes, respectively.  相似文献   

14.
New sensitive and direct spectrophotometric assays for orotate phosphoribosyltransferase and orotidylate-5'-monophosphate (OMP) decarboxylase are described. The assays utilize a thioketone derivative of orotate (4-thio-6-carboxyuracil) which is converted into 4-thio-OMP by the transferase in the presence of phosphoribosyl pyrophosphate. 4-Thio-OMP is subsequently decarboxylated to 4-thio-UMP by OMP decarboxylase. A novel, efficient synthesis of thioorotate is described. Unlike the natural substrates, the interconversion of the thioketone derivatives yields large spectral changes in the near-visible absorption region. Orotate phosphoribosyltransferase is assayed at 333 nm with a molar extinction coefficient of 10,300 M-1 cm-1 for the conversion of thioorotate to either 4-thio-OMP or 4-thio-UMP. Orotidylate decarboxylase is assayed at 365 nm with a molar extinction coefficient of 3350 M-1 cm-1 for the conversion of 4-thio-OMP to 4-thio-UMP. Another advantage of these substrates is that they bind less tightly to orotate phosphoribosyltransferase and OMP decarboxylase than orotate or OMP, respectively. Thus, the initial rates of substrate conversion to product are readily measurable near the Km values for the thioketone substrates. The ability to follow the reactions directly permits the rapid determination of Km values for the thioketone substrates and Ki values for inhibitors of the enzymes.  相似文献   

15.
Hemopexin (HPX), serving as scavenger and transporter of toxic plasma heme, has been postulated to play a key role in the homeostasis of NO. Here, kinetics of HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO are reported. NO reacts reversibly with HPX-heme(II) yielding HPX-heme(II)-NO, according to the minimum reaction scheme: HPX-heme(II)+NO kon<-->koff HPX-heme(II)-NO values of kon, koff, and K (=kon/koff) are (6.3+/-0.3)x10(3)M-1s-1, (9.1+/-0.4)x10(-4)s-1, and (6.9+/-0.6)x10(6)M-1, respectively, at pH 7.0 and 10.0 degrees C. O2 reacts with HPX-heme(II)-NO yielding HPX-heme(III) and NO3-, by means of the ferric heme-bound peroxynitrite intermediate (HPX-heme(III)-N(O)OO), according to the minimum reaction scheme: HPX-heme(II)-NO+O2 hon<--> HPX-heme(III)-N(O)OO l-->HPX-heme(III)+NO3- the backward reaction rate is negligible. Values of hon and l are (2.4+/-0.3)x10(1)M-1s-1 and (1.4+/-0.2)x10(-3)s-1, respectively, at pH 7.0 and 10.0 degrees C. The decay of HPX-heme(III)-N(O)OO (i.e., l) is rate limiting. The HPX-heme(III)-N(O)OO intermediate has been characterized by optical absorption spectroscopy in the Soret region (lambdamax=409 nm and epsilon409=1.51x10(5)M-1cm-1). These results, representing the first kinetic evidence for HPX-heme(II) nitrosylation and O2-mediated oxidation of HPX-heme(II)-NO, might be predictive of transient (pseudo-enzymatic) function(s) of heme carriers.  相似文献   

16.
The spectral behavior of the enzyme prostaglandin H synthase was studied in the Soret region under conditions that permitted comparison of enzyme intermediates involved in peroxidase and cyclooxygenase activities. First, the peroxidase activity was examined. The enzyme's spectral behavior upon reacting with 5-phenyl-pent-4-enyl-1-hydroperoxide was different depending on the presence or absence of the reducing substrate, phenol. In the reaction of prostaglandin H synthase with the peroxide in the absence of phenol, formation of the enzyme intermediate compound I is observed followed by partial conversion to compound II and then by enzyme bleaching. In the reaction with both peroxide and phenol the absorbance decreases and a steady-state spectrum is observed which is a mixture of native enzyme and compound II. The steady state is followed by an increase in absorbance back to that of the native enzyme with no bleaching. The difference can be explained by the reactivity of phenol as a reducing substrate with the prostaglandin H synthase intermediate compounds. Cyclooxygenase activity with arachidonic acid could not be examined in the absence of diethyldithiocarbamate because extensive bleaching occurred. In the presence of diethyldithiocarbamate, enzyme spectral behavior similar to that seen in the reaction of the peroxide and phenol was observed. The similarity of the spectra strongly suggests that the enzyme intermediates involved in both the peroxidase and cyclooxygenase reactions are the same.  相似文献   

17.
The Type 3 copper site is intact but labile in Type 2-depleted laccase   总被引:1,自引:0,他引:1  
We report results of experiments designed to characterize the Type 1 and Type 3 copper sites in Rhus laccase depleted of Type 2 copper (T2D). Use of the Lowry method for determining protein concentration yielded the value 5620 +/- 570 M-1 cm-1 for the extinction of the 615-nm absorption band of this protein. Anaerobic reductive titrations with Ru(NH)3)6(2)+ and Cr(II)aq ions established the presence of three electron-accepting centers, which are reduced in a complex manner. Treatment of T2D laccase with a 70-fold excess of H2O2 induced a new shoulder at 330 nm (delta epsilon = 660 M-1 cm-1), as well as intensity perturbations at 280 and 615 nm. Comparison of difference spectra show that this 330-nm band derives from a Type 3 copper-bound peroxide and not from a reoxidized Type 3 site. Dioxygen reoxidation of ascorbate-reduced T2D laccase produced new difference bands at 330 nm (delta epsilon = 770 M-1 cm-1) and 270 nm (delta epsilon = 13,000 M-1 cm-1), the former assigned to a bound peroxide which is a dioxygen reduction intermediate. In the corresponding epr spectrum of this material new Cu(II) g parallel features (A parallel approximately 130 G) indicative of an isolated copper ion and a triplet signal near 3,400 G were observed, originating from the Type 3 sites of separate T2D laccase molecules. Reoxidation by ferricyanide or by dioxygen as mediated by iron hexacyanide did not produce these changes. Thus the magnetism of the reoxidized Type 3 site in T2D laccase can be perturbed as a consequence of aerobic turnover. The suggestion is advanced that there are presently three forms of T2D laccase, possibly metastable conformational isotypes, accounting for the apparently contradictory reports on the properties of this protein.  相似文献   

18.
The oxidation-reduction potential, E2, for the couple oxidized lipoamide dehydrogenase/2-electron reduced lipoamide dehydrogenase has been determined by measurement of equilibria of these enzyme species with lipoamide and dihydrolipoamide or with oxidized and reduced azine dyes. E2 is -0.280 V at pH 7, and deltaE2/deltapH is -0.06 V in the pH range 5.5 to 7.6. Values for E1, the oxidation-reduction potential for the couple 2-electron reduced enzyme/4-electron reduced enzyme, were obtained from measurements of the extent of dismutation of 2-electron reduced enzyme to form mixtures containing oxidized and 4-electron reduced enzyme. E1 is -0.346 V at pH 7, and deltaE1/deltapH is -0.06 V in the pH range 5.7 to 7.6. Spectra of oxidized enzyme and 4-electron reduced enzyme do not show variations with pH over this range, but the spectrum of the 2-electron reduced enzyme is pH-dependent, with the molar extinction at 530 nm changing from 3250 M-1 cm-1 at pH 8 to 2050 M-1 cm-1 at pH 5.2. The pH-dependent changes which are observed in the absorption properties of the 2-electron reduced enzyme are consistent with the disappearance of a charge transfer complex between an amino acid side chain and the oxidized flavin at the lower pH values, with the apparent pK of the side chain at pH 5. It has been suggested that the 530 nm absorbance of 2-electron reduced enzyme is due to a charge transfer complex between thiolate anion and oxidized flavin, and we propose that the thiolate anion is stabilized by interaction with a protonated base. The thermodynamic data predict that the amount of 4-electron reduced enzyme formed when the enzyme is reduced by excess NADH will be pH-dependent, with the greatest amounts seen at low pH values. These data support earlier evidence (Matthews, R.G., Wilkinson, K.D., Ballou, D,P., and Williams, C.H., Jr. (1976) in Flavins and Flavoproteins (Singer, T.P., ed) pp. 464-472; Elsevier Scientific Publishing Co., Amsterdam) that the role of NAD+ in the NADH-lipoamide reductase reaction catalyzed by lipoamide dehydrogenase is to prevent accumulation of inactive 4-electron reduced enzyme by simple reversal of the reduction of 2-electron reduced enzyme by NADH.  相似文献   

19.
The ground state magnetic properties of manganese superoxide dismutase from Thermus thermophilus in its native and reduced forms have been determined using saturation magnetization data. Parallel EPR measurements were used to verify that commonly encountered paramagnetic impurities were at low concentration relative to the metalloprotein. The native enzyme contains high spin Mn(III) (S = 2) with D = +2.44(5) cm-1 and E/D = 0. The reduced enzyme contains high spin Mn(II) (S = 5/2) with D = +0.50(5) cm-1 and E/D = 0.027. These results are in keeping with the suggestions of several previous groups of workers concerning the permissible oxidation and spin states of the manganese, but the zero field splitting parameters are unlike those of known manganese model compounds. In addition, the extinction coefficient for the visible region absorption maximum of the native enzyme and the corresponding difference extinction coefficient (native minus reduced) have been measured using saturation magnetization data to quantitate Mn(III) present. The result, epsilon 480 = 950(80) M-1 cm-1 (delta epsilon 480 = 740(60) M-1 cm-1) agrees with the previously reported value of epsilon 480 = 910 M-1 cm-1 found by total manganese determination (Sato, S. and Nakazawa, K. (1978) J. Biochem. 83, 1165-1171). The wide variation in the reported visible region extinction coefficients of manganese superoxide dismutases from different sources is discussed.  相似文献   

20.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号