首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.  相似文献   

2.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   

3.
We studied the effects of Pin1, a regulatory molecule of the oncosuppressor p53, on both cell cycle arrest and apoptosis by treating primary mouse embryonic fibroblasts (MEFs) with etoposide. Etoposide induced G1 arrest in both wild-type and Pin1 null (pin1(-/-)) MEFs, and G2/M arrest and apoptotic cell death in MEFs lacking either p53 only (p53(-/-)) or both Pin1 and p53 (pin1(-/-)p53(-/-)). Both pin1(-/-) and pin1(-/-)p53(-/-) MEFs were enhanced the release of cytochrome c from the mitochondria, which might induce apoptosis. In response to etoposide treatment, apoptotic cell death was displayed in pin1(-/-)p53(-/-) MEFs but not in pin1(-/-) MEFs. These results suggest that p53 retards growth and suppresses etoposide-induced apoptosis in pin1(-/-) MEFs.  相似文献   

4.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

5.
The nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis. Both depletion and overexpression of NS reduce cell proliferation. However, the mechanisms underlying this regulation are still unclear. Here, we show that NS regulates p53 activity through the inhibition of MDM2. NS binds to the central acidic domain of MDM2 and inhibits MDM2-mediated p53 ubiquitylation and degradation. Consequently, ectopic overexpression of NS activates p53, induces G(1) cell cycle arrest, and inhibits cell proliferation. Interestingly, the knockdown of NS by small interfering RNA also activates p53 and induces G(1) arrest. These effects require the ribosomal proteins L5 and L11, since the depletion of NS enhanced their interactions with MDM2 and the knockdown of L5 or L11 abrogated the NS depletion-induced p53 activation and cell cycle arrest. These results suggest that a p53-dependent cell cycle checkpoint monitors changes of cellular NS levels via the impediment of MDM2 function.  相似文献   

6.
Normal p53 function in primary cells deficient for Siah genes   总被引:2,自引:0,他引:2       下载免费PDF全文
Overexpression studies have suggested that Siah1 proteins may act as effectors of p53-mediated cellular responses and as regulators of mitotic progression. We have tested these hypotheses using Siah gene knockout mice. Siah1a and Siah1b were not induced by activation of endogenous p53 in tissues, primary murine embryonic fibroblasts (MEFs) or thymocytes. Furthermore, primary MEFs lacking Siah1a, Siah1b, Siah2, or both Siah2 and Siah1a displayed normal cell cycle progression, proliferation, p53-mediated senescence, and G(1) phase cell cycle arrest. Primary thymocytes deficient for Siah1a, Siah2, or both Siah2 and Siah1a, E1A-transformed MEFs lacking Siah1a, Siah1b, or Siah2, and Siah1b-null ES cells all underwent normal p53-mediated apoptosis. Finally, inhibition of Siah1b expression in Siah2 Siah1a double-mutant cells failed to inhibit cell division, p53-mediated induction of p21 expression, or cell cycle arrest. Our loss-of-function experiments do not support a general role for Siah genes in p53-mediated responses or mitosis.  相似文献   

7.
Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11   总被引:1,自引:0,他引:1  
Mycophenolate mofetil (MMF), a prodrug of mycophenolic acid (MPA), is widely used as an immunosuppressive agent. MPA selectively inhibits inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme for the de novo synthesis of guanine nucleotides, leading to depletion of the guanine nucleotide pool. Its chemotherapeutic effects have been attributed to its ability to induce cell cycle arrest and apoptosis. MPA treatment has also been shown to induce and activate p53. However, the mechanism underlying the p53 activation pathway is still unclear. Here, we show that MPA treatment results in inhibition of pre-rRNA synthesis and disruption of the nucleolus. This treatment enhances the interaction of MDM2 with L5 and L11. Interestingly, knockdown of endogenous L5 or L11 markedly impairs the induction of p53 and G(1) cell cycle arrest induced by MPA. These results suggest that MPA may trigger a nucleolar stress that induces p53 activation via inhibition of MDM2 by ribosomal proteins L5 and L11.  相似文献   

8.
We investigated the effect of an acidic environment on the radiation-induced G2/M arrest and apoptosis using RKO.C human colorectal cancer cells expressing wild-type p53 and RC10.1 cells, a subline of RKO.C cells deficient in p53 as well as p53+/+ MEFs and p53-/- MEFs (mouse embryonic fibroblasts). The cells were irradiated with 4 Gy or 12 Gy of gamma-rays in pH 7.5 medium or pH 6.6 medium. p53 accentuated the progression of cells from radiation-induced G2/M arrest to apoptosis and the pH 6.6 environment suppressed the progression of cells through G2/M-phase to apoptosis after irradiation. Further analysis indicated that the radiation-induced G2/M arrest was due mainly to G2 arrest in both pH 7.5 and pH 6.6. Therefore, it was concluded that p53 enhances, and an acidic environment suppresses, the exit of cells from radiation-induced G2 arrest by altering cyclin B1-Cdc2 kinase activity.  相似文献   

9.
Camptothecin (CPT), a topoisomerase (Top) I-targeting drug that stabilizes Top1-DNA covalent adducts, can induce S-phase-specific cytotoxicity due to the arrest of progressing replication forks. However, CPT-induced non-S-phase cytotoxicity is less well characterized. In this study, we have identified topoisomerase IIβ (Top2β) as a specific determinant for CPT sensitivity, but not for many other cytotoxic agents, in non-S-phase cells. First, quiescent mouse embryonic fibroblasts (MEFs) lacking Top2β were shown to be hypersensitive to CPT with prominent induction of apoptosis. Second, ICRF-187, a Top2 catalytic inhibitor known to deplete Top2β, specifically sensitized MEFs to CPT. To explore the molecular basis for CPT hypersensitivity in Top2β-deficient cells, we found that upon CPT exposure, the RNA polymerase II large subunit (RNAP LS) became progressively depleted, followed by recovery to nearly the original level in wild-type MEFs, whereas RNAP LS remained depleted without recovery in Top2β-deficient cells. Concomitant with the reduction of the RNAP LS level, the p53 protein level was greatly induced. Interestingly, RNAP LS depletion has been well documented to lead to p53-dependent apoptosis. Altogether, our findings support a model in which Top2β deficiency promotes CPT-induced apoptosis in quiescent non-S-phase cells, possibly due to RNAP LS depletion and p53 accumulation.  相似文献   

10.
11.
12.
13.
14.
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.  相似文献   

15.
Background: MYCN oncogene amplification occurs in 20-25% of neuroblastoma and is associated with a poor prognosis. We previously reported that MYCN amplified (MNA) p53 wild-type neuroblastoma cell lines failed to G1 arrest in response to irradiation, but this could not be attributed to MYCN alone. Hypothesis: Genes co-amplified with MYCN and/or the predominant cell type, neuronal (N) or substrate adherent (S) phenotypes determine the downstream response to DNA damage in neuroblastoma cell lines. Methods: The MYCN amplicons of five MNA and two non-MNA cell line were mapped using 50K Single Nucleotide Polymorphism (SNP) arrays. One MNA (NBL-W) and one non-MNA neuroblastoma cell line (SKNSH) were sub-cloned into N and S-type cells and the p53 pathway investigated after irradiation induced DNA damage. To determine the role of p53 it was knocked down using siRNA. Results: No genes with a potential role in cell cycle regulation were consistently co-amplified in the MNA cell lines studied. High MYCN expressing NBLW-N cells failed to G1 arrest following irradiation and showed impaired induction of p21 and MDM2, whereas low MYCN expressing NBLW-S cells underwent a G1 arrest with induction of p21 and MDM2. Conversely N type cells underwent higher levels of apoptosis than S type cells. Following p53 knockdown in SHSY5Y N-type cells there was a decrease in apoptosis. Conclusions: The downstream response to DNA damage in p53 wild-type neuroblastoma cell lines is p53 dependent, and determined both by the morphological sub-type and MYCN expression.  相似文献   

16.
Alterations in MYC and p53 are hallmarks of cancer. p53 coordinates the response to gamma irradiation (gamma-IR) by either triggering apoptosis or cell cycle arrest. c-Myc activates the p53 apoptotic checkpoint, and thus tumors overexpressing MYC often harbor p53 mutations. Nonetheless, many of these cancers are responsive to therapy, suggesting that Myc may sensitize cells to gamma-IR independent of p53. In mouse embryo fibroblasts (MEFs) and in E micro -myc transgenic B cells in vivo, c-Myc acts in synergy with gamma-IR to trigger apoptosis, but alone, when cultured in growth medium, it does not induce a DNA damage response. Surprisingly, c-Myc also sensitizes p53-deficient MEFs to gamma-IR-induced apoptosis. In normal cells, and in precancerous B cells of E micro -myc transgenic mice, this apoptotic response is associated with the suppression of the antiapoptotic regulators Bcl-2 and Bcl-X(L) and with the concomitant induction of Puma, a proapoptotic BH3-only protein. However, in p53-null MEFs only Bcl-X(L) expression was suppressed, suggesting levels of Bcl-X(L) regulate the response to gamma-IR. Indeed, Bcl-X(L) overexpression blocked this apoptotic response, whereas bcl-X-deficient MEFs were inherently and selectively sensitive to gamma-IR-induced apoptosis. Therefore, MYC may sensitize tumor cells to DNA damage by suppressing Bcl-X.  相似文献   

17.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

18.
The tumour suppressor functions of p53 that are important for its activity depend on its role as a cell cycle arrest mediator and apoptosis inducer. Here we identify a novel function for p53 in regulating cell morphology and movement. We investigated the overall effect of p53 on morphological changes induced by RhoA, Rac1 and Cdc42 GTPases in mouse embryonic fibroblasts (MEFs). Interestingly, p53 exerted a selective effect on Cdc42-mediated cell functions. (i) Both overexpression of wild-type p53 and activation of endogenous p53 counteracted Cdc42-induced filopodia formation. Conversely, p53-deficient MEFs exhibited constitutive membrane filopodia. Mechanistic studies indicate that p53 prevents the initiating steps of filopodia formation downstream of Cdc42. (ii) Over expression of p53 modulates cell spreading of MEFs on fibronectin. (iii) During cell migration, the reorientation of the Golgi apparatus in the direction of movement is abolished by wild-type p53 expression, thus preventing cell polarity. Our data demonstrate a previously uncharacterized role for p53 in regulating Cdc42-dependent cell effects that control actin cytoskeletal dynamics and cell movement. This novel function may contribute to p53 anti-tumour activity.  相似文献   

19.
Cells undergoing p53-mediated apoptosis activate caspase 3-like activities, resulting in the cleavage of the MDM2 oncoprotein and other apoptotic substrates such as poly(ADP-ribose) polymerase. To investigate the mechanism of p53-mediated apoptosis and to determine whether cleavage of MDM2 has a potential role in regulating p53, we examined caspase activation and cleavage of MDM2 in a cell line undergoing p53-mediated growth arrest and delayed apoptosis. We found that in H1299 cells expressing a temperature-sensitive human p53, a distinct caspase activity specific for the MDM2 cleavage site DVPD is induced by p53 prior to the onset of apoptosis and loss of viability. This is accompanied by the cleavage of MDM2 but not the apoptotic substrate poly(ADP-ribose) polymerase. The cleaved MDM2 loses the ability to promote p53 degradation and may potentially function in a dominant-negative fashion to stabilize p53. These results suggest that p53 activation may induce a positive feedback effect by cleavage of MDM2 through a unique caspase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号