首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During vitamin B12 starvation of Euglena, a new peak appears in the cell volume distribution. Some cells are inhibited at a unique point in the cell cycle between the initiation of DNA synthesis and nuclear division. The mechanism of inhibition of other cells differs.  相似文献   

2.
1. The concentrations of RNA, DNA and protein are decreased in cells of Euglena gracilis var. bacillaris grown on suboptimum concentrations of vitamin B(12). 2. The addition of vitamin B(12) to deficient cells stimulates the incorporation of [(14)C]formate into the above cell components as well as into thymine of DNA and serine and methionine of protein. 3. In a cell-free system from vitamin B(12)-deficient cells, the incorporation of labelled formate into thymidylate is decreased to a greater extent with uridine than with deoxyuridine as the substrate. 4. The addition of unlabelled glutamate dilutes the radioactivity incorporated into thymine from labelled formate. 5. These results are interpreted to mean that, in DNA synthesis, vitamin B(12) has a greater role in the reduction of ribotides to deoxyribotides than in the reduction of formate to thymine methyl and that the vitamin B(12)-dependent conversion of glutamate into beta-methylaspartate also contributes to thymine synthesis.  相似文献   

3.
Vitamin B12 deficiency arrests cell division in Euglena gracilis. B12 starvation for short periods made it possible to induce synchronous growth by addition of the vitamin. Culture conditions were established to optimize replenishment synchrony. The DNA content of E. gracilis in steady state culture and vitamin B12 deficiency culture was measured by flow cytofluorometry and was consistent with colorimetric determinations. The cell volume and DNA distributions of E. gracilis in synchronous culture were analyzed and the sequential changes during the division cycle were computed. Synchronous culture permits more definitive studies of shifts in cell volume and DNA distributions, in which the biochemical events required for cell division are presumably synchronized.  相似文献   

4.
SYNOPSIS Vitamin B12 deficiency arrests cell division in Euglena gracilis. B12 starvation for short periods made it possible to induce synchronous growth by addition of the vitamin. Culture conditions were established to optimize replenishment synchrony. The DNA content of E. gracilis in steady state culture and vitamin B12 deficiency culture was measured by flow cytofluorometry and was consistent with colorimetric determinations. The cell volume and DNA distributions of E. gracilis in synchronous culture were analyzed and the sequential changes during the division cycle were computed. Synchronous culture permits more definitive studies of shifts in cell volume and DNA distributions, in which the biochemical events required for cell division are presumably synchronized.  相似文献   

5.
Using the binding protein method we found that cAMP levels in normal, exponentially growing Euglena stay constant on per cell and protein basis. The level rises slightly when cells enter the stationary stage. Cells growing in low vitamin B12 medium show the same pattern during predeficiency growth. Upon becoming vitamin B12 deficient, the cAMP level decreases. Replenishment of these cells with the vitamin causes an immediate drop, followed by a sharp rise in cAMP. This is followed by resumption of DNA synthesis. The cAMP level drops and rises again when DNA duplication is completed and during the G2 period. The level of the cAMP drops again followed by resumption of cell division. the data suggest a relation exists between cAMP level, resumption and completion of DNA synthesis, and cell division.  相似文献   

6.
7.
The deoxyribonucleoside triphosphate pools are undetectable in vitamin B-12-deficient cells of Euglena gracillis, but appear rapidly after the replenishment with the vitamin. They reach a maximum size that is about 6 times that of normal exponentially growing cells, but decrease to almost zero as the cells divide. The pools expand again during the post-replenishment shortened cell cycle. However, the expansion takes place during rather than before the resumption of DNA synthesis. The maximum sizes reached are still larger than in normal cells. By using the protein-synthesis inhibitor cycloheximide and determining the pool size, we found that vitamin-deficient cells apparently accumulate a large amount of ribonucleoside triphosphate reductase apoenzyme, which lacks the vitamin B12 coenzyme. We showed that the production of the deoxyribonucleoside triphosphates is not closely coupled to DNA synthesis under our experimental conditions, and that the concentration of the deoxyribonucleoside triphosphate pools per unit of DNA synthesized is almost constant for all stages of growth examined.  相似文献   

8.
The size of the deoxyribonucleoside triphosphate pools of vitamin B-12-deficient cells of Euglena gracilis, and of vitamin B-12-deficient cells repleted with the vitamin, were measured. We found that the pools were very small, if they exist at all, in deficient cells but expand rapidly with the addition of the vitamin. The sizes of the pools decrease when DNA synthesis is completed, and are very small when the cells begin to divide.  相似文献   

9.
Electron microscopic analysis was used to study cells of Escherichia coli B and K-12 during and after amino acid starvation. The results confirmed our previous conclusion that cell division and initiation of DNA replication occur at a smaller cell volume after amino acid starvation. Although during short starvation periods, the number of constricting cells decreased due to residual division, it appears that during prolonged starvation, cells of E. coli B and K-12 were capable of initiating new constrictions. During amino acid starvation, cell diameter decreased significantly. The decrease was reversed only after two generation times after the resumption of protein synthesis and was larger in magnitude than that previously observed before division (F. J. Trueba and C. L. Woldringh, J. Bacteriol. 142:869-878, 1980). This decrease in cell diameter correlates with synchronization of cell division which has been shown to occur after amino acid starvation.  相似文献   

10.
The ribonucleotide reductase activities in vitamin B12-sufficient and -deficient cells of Euglena gracilis were measured. We found that the cells progress into vitamin B12 deficiency the enzyme activity increases, reaching a maximum value of 20-fold in advanced deficiency. No signigicant differences in the activities were found to result as a consequence of different growth conditions. We propose that the increased activity in vitamin B12-deficient cells is due to an increase in enzyme protein.  相似文献   

11.
The formation and accumulation of DNA fragments containing no more than 23,000 pairs of bases were observed under exposure of human larynx epidermoid carcinoma cells (Hep-2) to "chemical nuclease", oxycobalamin (vitamin B12b) and ascorbic acid (vitamin C). The obtained DNA damages were repaired more slowly than those induced by gamma-irradiation in the dose adequate to the level of DNA damages. DNA reparation was not revealed after washing the cells from vitamin B12b and ascorbic acid, and in the course of cell incubation with ascorbic acid. Vitamin B12b and ascorbic acid separately did not induce degradation of DNA. DNA damages induced by "chemical nuclease" action precede the cell death observed later.  相似文献   

12.
SYNOPSIS. The effects of phosphate starvation on the synthetic and division rates of Euglena gracilis strain Z are described. Phosphate starvation inhibits rates of the following processes, in the order: RNA synthesis > DNA synthesis > cell division > chlorophyll synthesis and plastid replication. As a consequence of the differential effect of phosphate starvation on the synthetic and division rates the average gross chemical composition of the cells is subject to continuous change.  相似文献   

13.
DNA stainability by different fluorochromes has been compared in exponentially dividing and stationary Euglena cells. With the intercalating fluorochromes, ethidium bromide, acridine orange and DAPI, a decrease of fluorescence intensity of the G1 cells is observed when cells enter stationary stage. However this decrease of fluorescence is not obtained with the nonintercalating fluorochrome Hoechst 33258. If nuclear basic proteins are extracted, however, the intensity of staining by either Hoechst 33258 or ethidium-bromide is comparable in stationary and dividing cells. Therefore, the decrease of fluorescence intensity of the G1 cells observed during the transition from exponential to stationary phase is not due to a loss of DNA but is related to the exposure of chromatin binding sites for ethidium bromide. In Euglena cells, DNA accessibility for intercalating fluorochromes depends upon chromatin structure and consequently upon cell age.  相似文献   

14.
Different fractionation procedures were used to determine the location of vitamin B12 binding sites in Euglena gracilis. Using uptake measurements, cell fractionation, and light and electron microscopy, the cuticle of the cell was found to be the fraction containing the majority of B12 binding sites. The apparent distribution of vitamin binding sites differed according to the cell lysis method used. The cuticle fraction was responsible for the binding of 80% of the vitamin taken up by the cell during both the rapid and the slow phase of uptake. These results suggest that vitamin B12 binding is regulated, in part, at the cuticle level, and support our previous conclusion that the secondary phase of uptake represents the synthesis of new receptor sites and not the unloading of vitamin inside the cell.  相似文献   

15.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

16.
Fenech M 《Mutation research》2012,733(1-2):21-33
Folate plays a critical role in the prevention of uracil incorporation into DNA and hypomethylation of DNA. This activity is compromised when vitamin B12 concentration is low because methionine synthase activity is reduced, lowering the concentration of S-adenosyl methionine (SAM) which in turn may diminish DNA methylation and cause folate to become unavailable for the conversion of dUMP to dTMP. The most plausible explanation for the chromosome-breaking effect of low folate is excessive uracil misincorporation into DNA, a mutagenic lesion that leads to strand breaks in DNA during repair. Both in vitro and in vivo studies with human cells clearly show that folate deficiency causes expression of chromosomal fragile sites, chromosome breaks, excessive uracil in DNA, micronucleus formation, DNA hypomethylation and mitochondrial DNA deletions. In vivo studies show that folate and/or vitamin B12 deficiency and elevated plasma homocysteine (a metabolic indicator of folate deficiency) are significantly correlated with increased micronucleus formation and reduced telomere length respectively. In vitro experiments indicate that genomic instability in human cells is minimised when folic acid concentration in culture medium is greater than 100nmol/L. Intervention studies in humans show (a) that DNA hypomethylation, chromosome breaks, uracil incorporation and micronucleus formation are minimised when red cell folate concentration is greater than 700nmol/L and (b) micronucleus formation is minimised when plasma concentration of vitamin B12 is greater than 300pmol/L and plasma homocysteine is less than 7.5μmol/L. These concentrations are achievable at intake levels at or above current recommended dietary intakes of folate (i.e. >400μg/day) and vitamin B12 (i.e. >2μg/day) depending on an individual's capacity to absorb and metabolise these vitamins which may vary due to genetic and epigenetic differences.  相似文献   

17.
Methionine synthase, a critical enzyme in deoxyribonucleotide biosynthesis for DNA replication, requires vitamin B12 as a cofactor. We have tested the hypothesis that depletion of cells of vitamin B12 would block growth of neoplastic cells and divert them into apoptosis and could form the basis of a new therapeutic strategy for cancer treatment. Using nitrous oxide to inactivate vitamin B12 we show that, in a variety of cell lines in vitro, methionine synthase is rapidly inhibited, the cells cease proliferation and undergo apoptosis. The kinetics of cell death, once started, are similar to those observed following methotrexate treatment or serum withdrawal. This is the first observation of apoptosis being induced following depletion of an essential metabolite as opposed to the more conventional strategy of adding a toxic drug to damage cells thereby triggering apoptosis. Moreover, vitamin B12 depletion has no effect on the nonproliferating cell population.  相似文献   

18.
Ribonucleotide reductases provide the building blocks for DNA synthesis. Three classes of enzymes are known, differing widely in amino acid sequence but with similar structural motives and allosteric regulation. Class I occurs in eukaryotes and aerobic prokaryotes, class II occurs in aerobic and anaerobic prokaryotes, and class III occurs in anaerobic prokaryotes. The eukaryote Euglena gracilis contains a class II enzyme (Gleason, F. K., and Hogenkamp, H. P. (1970) J. Biol. Chem. 245, 4894-4899) and, thus, forms an exception. Class II enzymes depend on vitamin B(12) for their activity. We purified the reductase from Euglena cells, determined partial peptide sequences, identified its cDNA, and purified the recombinant enzyme. Its amino acid sequence and general properties, including its allosteric behavior, were similar to the class II reductase from Lactobacillus leichmannii. Both enzymes belong to a distinct small group of reductases that unlike all other homodimeric reductases are monomeric. They compensate the loss of the second polypeptide of dimeric enzymes by a large insertion in the monomeric chain. Data base searching and sequence comparison revealed a homolog from the eukaryote Dictyostelium discoideum as the closest relative to the Euglena reductase, suggesting that the class II enzyme was present in a common, B(12)-dependent, eukaryote ancestor.  相似文献   

19.
Summary InEuglena gracilis Z, vitamin B12 deficiency arrests cell divisions in S/G 2 phase. After the addition of vitamin B12 to blocked cells, nuclear and cellular divisions begin to be induced between the 3rd and the 4th and between the 4th and the 5th hour respectively; the cell population is doubled after the 11th hour.Addition of cycloheximide either with vitamin B12 or 2 to 6 hours later inhibits the resumption of divisions and blocks cell development in different stages between G 2, karyokinesis and cytokinesis. These results suggest that as a prerequisite protein-dependent steps are required at precise times during the reversibility of blocked cell divisions: at least sequential syntheses of protein concern a) formation of the mitotic spindle and replication of the pellicle; b) completion of the nuclear division; c) progression of the cleavage furrow.  相似文献   

20.
The dynamics of the T cell antigen receptor on a murine antigen specific T cell hybridoma have been analyzed using a monoclonal anti-receptor antibody. When this antibody, A2B4-2, is bound to surface receptors, no internalization is seen at 4 degrees C. Upon warming to 37 degrees C, between 20 and 30% of the antibody molecules are internalized over 20-30 min as measured by sensitivity to external acid. This level of internalization is identical if monovalent Fab fragments are used. In contrast, cross-linking of the anti-receptor antibody with a second antibody leads to rapid internalization of 100% of prebound surface A2B4-2. Phorbol 12-myristate 13-acetate (PMA) leads to the rapid internalization of up to 65% of the surface A2B4-2 or A2B4-2 Fab fragments. This effect requires protein kinase C and can be completely inhibited by depleting this kinase from the cells by long term treatment with high doses of PMA. Pretreatment of the T cells with PMA leads to a 40-50% drop in surface T cell antigen receptor expression. Despite the loss of surface receptors, the uptake of A2B4-2 in PMA-treated cells at 37 degrees C is identical to that seen in control cells. The total uptake of A2B4-2 at 37 degrees C is 25-30% greater than the number of surface receptors in control cells and about 100-150% greater than the number of surface receptors in PMA-treated cells. At steady state the percentage of total A2B4-2 on the cell surface is 75% for control cells and 38% for PMA-treated cells. The good agreement of these numbers with the percent internalization of a cohort of surface receptors suggests that all receptors are constantly cycling. The effect of PMA is to alter the kinetic parameters of this cycling, thus changing the steady state distribution of receptors between the plasma membrane and internal, presumably endosomal compartments. Measurement of initial rates of internalization suggests that the PMA effect can be largely explained by an increase in the internalization rate constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号