首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in aging biology has identified several pathways that are molecularly conserved across species that extend lifespan when mutated. The insulin/insulin‐like signaling (IIS) pathway is one of the most widely studied of these. It has been assumed that extending lifespan also extends healthspan (the period of life with minimal functional loss). However, data supporting this assumption conflict and recent evidence suggest that life extension may, in and of itself, extend the frail period. In this study, we use Caenorhabditis elegans to further probe the link between lifespan and healthspan. Using movement decline as a measure of health, we assessed healthspan across the entire lifespan in nine IIS pathway mutants. In one series of experiments, we studied healthspan in mass cultures, and in another series, we studied individuals longitudinally. We found that long‐lived mutants display prolonged mid‐life movement and do not prolong the frailty period. Lastly, we observed that early‐adulthood movement was not predictive of late‐life movement or survival, within identical phenotypes. Overall, these observations show that extending lifespan does not prolong the period of frailty. Both genotype and a stochastic component modulate aging, and movement late in life is more variable than early‐life movement.  相似文献   

2.
Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome‐wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild‐type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3–3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (< 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson–Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild‐type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known.  相似文献   

3.
The Y chromosome, a sex chromosome that only exists in males, has been ignored in traditional epigenetic association studies for multiple reasons. However, sex differences in aging‐related phenotypes and mortality could suggest a critical role of the sex chromosomes in the aging process. We obtained blood‐based DNA methylation data on the Y chromosome for 624 men from four cohorts and performed a chromosome‐wide epigenetic association analysis to detect Y‐linked CpGs differentially methylated over age and cross‐validated the significant CpGs in the four cohorts. We identified 40–219 significant CpG sites (false discovery rate <0.05) with >82% of them hypermethylated with increasing age, which is in strong contrast to the patterns reported on the autosomal chromosomes. Comparing the rate of change in the Y‐linked DNA methylation across cohorts that represent different age intervals revealed a trend of acceleration in DNA methylation with increasing age. The age‐dependent DNA methylation patterns on the Y chromosome were further examined for their association with all‐cause mortality with results suggesting that the predominant pattern of age‐related hypermethylation on the Y chromosome is associated with reduced risk of death.  相似文献   

4.
5.
It is reported that overweight may lead to accelerated aging. However, there is still a lack of evidence on the causal effect of overweight and aging. We collected genetic variants associated with overweight, age proxy indicators (telomere length, frailty index and facial aging), etc., from genome-wide association studies datasets. Then we performed MR analyses to explore associations between overweight and age proxy indicators. MR analyses were primarily conducted using the inverse variance weighted method, followed by various sensitivity and validation analyses. MR analyses indicated that there were significant associations of overweight on telomere length, frailty index, and facial aging (β = −0.018, 95% CI = −0.033 to −0.003, p = 0.0162; β = 0.055, 95% CI = 0.030–0.079, p < 0.0001; β = 0.029, 95% CI = 0.013–0.046, p = 0.0005 respectively). Overweight also had a significant negative causality with longevity expectancy (90th survival percentile, β = −0.220, 95% CI = −0.323 to −0.118, p < 0.0001; 99th survival percentile, β = −0.389, 95% CI = −0.652 to −0.126, p = 0.0038). Moreover, the findings tend to favor causal links between body fat mass/body fat percentage on aging proxy indicators, but not body fat-free mass. This study provides evidence of the causality between overweight and accelerated aging (telomere length decreased, frailty index increased, facial aging increased) and lower longevity expectancy. Accordingly, the potential significance of weight control and treatment of overweight in combating accelerated aging need to be emphasized.  相似文献   

6.
Improving health of the rapidly growing aging population is a critical medical, social, and economic goal. Identification of genes that modulate healthspan, the period of mid‐life vigor that precedes significant functional decline, will be an essential part of the effort to design anti‐aging therapies. Because locomotory decline in humans is a major contributor to frailty and loss of independence and because slowing of movement is a conserved feature of aging across phyla, we screened for genetic interventions that extend locomotory healthspan of Caenorhabditis elegans. From a group of 54 genes previously noted to encode secreted proteins similar in sequence to extracellular domains of insulin receptor, we identified two genes for which RNAi knockdown delayed age‐associated locomotory decline, conferring a high performance in advanced age phenotype (Hpa). Unexpectedly, we found that hpa‐1 and hpa‐2 act through the EGF pathway, rather than the insulin signaling pathway, to control systemic healthspan benefits without detectable developmental consequences. Further analysis revealed a potent role of EGF signaling, acting via downstream phospholipase C‐γplc‐3 and inositol‐3‐phosphate receptor itr‐1, to promote healthy aging associated with low lipofuscin levels, enhanced physical performance, and extended lifespan. This study identifies HPA‐1 and HPA‐2 as novel negative regulators of EGF signaling and constitutes the first report of EGF signaling as a major pathway for healthy aging. Our data raise the possibility that EGF family members should be investigated for similar activities in higher organisms.  相似文献   

7.
It is well known that the rate of aging is constant for populations described by the Gompertz law of mortality. However, this is true only when a population is homogeneous. In this note, we consider the multiplicative frailty model with the baseline distribution that follows the Gompertz law and study the impact of heterogeneity on the rate of aging in this population. We show that the rate of aging in this case is a function of age and that it increases in (calendar) time when the baseline mortality rate decreases.  相似文献   

8.
Mitochondrial DNA copy number (mtDNA‐CN) estimated in whole blood is a novel marker of mitochondrial mass and function that can be used in large population‐based studies. Analyses that attempt to relate mtDNA‐CN to specific aging phenotypes may be confounded by differences in the distribution of blood cell types across samples. Also, low or high mtDNA‐CN may have a different meaning given the presence of diseases associated with mitochondrial damage. We evaluated the impact of blood cell type distribution and diabetes status on the association between mtDNA‐CN and aging phenotypes, namely chronologic age, interleukin‐6, hemoglobin, and all‐cause mortality, among 672 participants of the InCHIANTI study. After accounting for white blood cell count, platelet count, and white blood cell proportions in multivariate models, associations of mtDNA‐CN with age and interleukin‐6 were no longer statistically significant. Evaluation of a statistical interaction by diabetes status suggested heterogeneity of effects in the analysis of mortality (< 0.01). The magnitude and direction of associations between mtDNA‐CN estimated from blood samples and aging phenotypes are influenced by the sample cell type distribution and disease status. Therefore, accounting for these factors may aid understanding of the relevance of mitochondrial DNA copy number to health and aging.  相似文献   

9.
A serum biomarker of biological versus chronological age would have significant impact on clinical care. It could be used to identify individuals at risk of early‐onset frailty or the multimorbidities associated with old age. It may also serve as a surrogate endpoint in clinical trials targeting mechanisms of aging. Here, we identified MCP‐1/CCL2, a chemokine responsible for recruiting monocytes, as a potential biomarker of biological age. Circulating monocyte chemoattractant protein‐1 (MCP‐1) levels increased in an age‐dependent manner in wild‐type (WT) mice. That age‐dependent increase was accelerated in Ercc1?/Δ and Bubr1H/H mouse models of progeria. Genetic and pharmacologic interventions that slow aging of Ercc1?/Δ and WT mice lowered serum MCP‐1 levels significantly. Finally, in elderly humans with aortic stenosis, MCP‐1 levels were significantly higher in frail individuals compared to nonfrail. These data support the conclusion that MCP‐1 can be used as a measure of mammalian biological age that is responsive to interventions that extend healthy aging.  相似文献   

10.
Increased activation of the major pro‐inflammatory NF‐κB pathway leads to numerous age‐related diseases, including chronic liver disease (CLD). Rapamycin, an inhibitor of mTOR, extends lifespan and healthspan, potentially via suppression of inflammaging, a process which is partially dependent on NF‐κB signalling. However, it is unknown if rapamycin has beneficial effects in the context of compromised NF‐κB signalling, such as that which occurs in several age‐related chronic diseases. In this study, we investigated whether rapamycin could ameliorate age‐associated phenotypes in a mouse model of genetically enhanced NF‐κB activity (nfκb1?/?) characterized by low‐grade chronic inflammation, accelerated aging and CLD. We found that, despite showing no beneficial effects in lifespan and inflammaging, rapamycin reduced frailty and improved long‐term memory, neuromuscular coordination and tissue architecture. Importantly, markers of cellular senescence, a known driver of age‐related pathology, were alleviated in rapamycin‐fed animals. Our results indicate that, in conditions of genetically enhanced NF‐κB, rapamycin delays aging phenotypes and improves healthspan uncoupled from its role as a suppressor of inflammation.  相似文献   

11.
Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of “omic” techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30–100 years old; 2: n = 68, 70% females, 19–107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial β-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.  相似文献   

12.
The severity index is a new echocardiographic measure that is thought to be an accurate indicator of aortic leaflet pathology in patients with AS. However, it has not been validated against cardiac catheterization or Doppler echocardiographic measures of AS severity nor has it been applied to patients with aortic sclerosis. The purposes of this study were to compare the severity index to invasive hemodynamics and Doppler echocardiography across the spectrum of calcific aortic valve disease, including aortic sclerosis and AS. 48 patients with aortic sclerosis and AS undergoing echocardiography and cardiac catheterization comprised the study population. The aortic valve leaflets were assessed for mobility (scale 1 to 6) and calcification (scale 1 to 4) and the severity index was calculated as the sum of the mobility and calcification scores according to the methods of Bahler et al. The severity index increased with increasing severity of aortic valve disease; the severity indices for patients with aortic sclerosis, mild to moderate AS and severe AS were 3.38 ± 1.06, 6.45 ± 2.16 and 8.38 ± 1.41, respectively. The aortic jet velocity by echocardiography and the square root of the maximum aortic valve gradient by cardiac catheterization correlated well with the severity index (r = 0.84, p < 0.0001; r = 0.84, p < 0.0001, respectively). These results confirm that the severity index correlates with hemodynamic severity of aortic valve disease and may prove to be a useful measure in patients with aortic sclerosis and AS.  相似文献   

13.
The accumulation of mitochondrial DNA (mtDNA) mutations is a suspected driver of aging and age‐related diseases, but forestalling these changes has been a major challenge. One of the best‐studied models is the prematurely aging mtDNA mutator mouse, which carries a homozygous knock‐in of a proofreading deficient version of the catalytic subunit of mtDNA polymerase‐γ (PolgA). We investigated how voluntary exercise affects the progression of aging phenotypes in this mouse, focusing on mitochondrial and protein homeostasis in both brain and peripheral tissues. Voluntary exercise significantly ameliorated several aspects of the premature aging phenotype, including decreased locomotor activity, alopecia, and kyphosis, but did not have major effects on the decreased lifespan of mtDNA mutator mice. Exercise also decreased the mtDNA mutation load. In‐depth tissue proteomics revealed that exercise normalized the levels of about half the proteins, with the majority involved in mitochondrial function and nuclear–mitochondrial crosstalk. There was also a specific increase in the nuclear‐encoded proteins needed for the tricarboxylic acid cycle and complex II, but not in mitochondrial‐encoded oxidative phosphorylation proteins, as well as normalization of enzymes involved in coenzyme Q biosynthesis. Furthermore, we found tissue‐specific alterations, with brain coping better as compared to muscle and with motor cortex being better protected than striatum, in response to mitochondrial dysfunction. We conclude that voluntary exercise counteracts aging in mtDNA mutator mice by counteracting protein dysregulation in muscle and brain, decreasing the mtDNA mutation burden in muscle, and delaying overt aging phenotypes.  相似文献   

14.
The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography–tandem mass spectrometry (LC–MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14–1.36, p = 4.96 × 10−06), and FN-OP (HR, 1.13; 95% CI, 1.02–1.23, p = 9.71 × 10−03). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.  相似文献   

15.

Objectives

The present study investigated the association of skeletal indicator of stress presence with mean age-at-death as a means of understanding whether commonly studied indicators are indeed indicative of increased frailty.

Materials and Methods

Using a medieval Gaelic population from Ballyhanna (Co. Donegal), the present study assessed the association between skeletal indicators of stress and mean age-at-death using the Kaplan–Meier survival function with log rank test to determine whether these indicators were associated with younger age-at-death, and therefore increased frailty, in sub-adults only (0 to 18 years, N = 139) and through comparison to an all-ages cohort (N = 318).

Results

Only linear enamel hypoplasia was found to be associated with significantly decreased survivorship across the all-ages cohort but, conversely, was associated with increased survivorship when analysis was restricted to sub-adults. All other indicators assessed were associated with increased age-at-death for both all-age cohorts and sub-adult cohorts (cribra orbitalia), increased age-at-death when assessing all ages only (porotic hyperostosis and healed periosteal lesions); or were sufficiently rare in adults to prevent comparative analysis (stunting and micronutrient deficiency). Increased survivorship in individuals with higher numbers of co-morbid skeletal indicators was observed for both sub-adults alone and all age cohort.

Discussion

These findings suggest that these commonly recorded skeletal indicators may be more accurately viewed simply as records of stressor exposure and subsequent survival only, rather than providing evidence that these sub-adults are frailer than their similarly aged-at-death peers. Thus, the demographic and sociocultural context is essential to the interpretation of observed skeletal indicators of stress.
  相似文献   

16.
Objective: The objective was to forecast BMI distribution in the U.S. population along with demographic changes based on past race‐, sex‐, and birth cohort‐specific secular trends. Research Methods and Procedures: We compiled data from 44,184 subjects from 4 National Health and Nutrition Examination Surveys (NHANES; 1971 to 2004). By race and sex, we fit regression models to create smoothed mean BMI curves by age for 1970 to 2010. Linking corresponding birth cohorts across age‐ and year‐specific mean BMI projections, we estimated the trajectory of relative BMI throughout each cohort's lifetime. These projections were validated using actual cohorts in the Nurses’ Health Study and Health Professionals Follow‐up Study. Combined with U.S. census, we predicted BMI distributions in 2010 and examined the joint impact of the obesity epidemic and population aging. Results: BMI secular trends in the past 3 decades differ significantly by birth cohort, sex, and race. If these trends continue, the prevalence of obesity is expected to reach 35%, 36%, 33%, and 55% in 2010 among white men, white women, black men, and black women, respectively, far from the Healthy People 2010 goal of 15%. Such forecasts translate into 9.3 million more obese adults 20 to 74 years of age than in 2000, 8.3 million of whom would be 50 years of age or older, and 8.5 million of whom would be white. The mean age among obese men and women is also expected to rise from 47 to 49 years among whites and from 43 to 44 years among blacks. Discussion: As the baby boom generation approaches retirement age, the continuing obesity epidemic signals a likely expansion in the population with obesity‐related comorbidities. A framework to combine BMI and demographic trends is essential in evaluating the burden and disparity associated with the epidemic in the aging U.S. population.  相似文献   

17.
18.
Summary Several statistical methods for detecting associations between quantitative traits and candidate genes in structured populations have been developed for fully observed phenotypes. However, many experiments are concerned with failure‐time phenotypes, which are usually subject to censoring. In this article, we propose statistical methods for detecting associations between a censored quantitative trait and candidate genes in structured populations with complex multiple levels of genetic relatedness among sampled individuals. The proposed methods correct for continuous population stratification using both population structure variables as covariates and the frailty terms attributable to kinship. The relationship between the time‐at‐onset data and genotypic scores at a candidate marker is modeled via a parametric Weibull frailty accelerated failure time (AFT) model as well as a semiparametric frailty AFT model, where the baseline survival function is flexibly modeled as a mixture of Polya trees centered around a family of Weibull distributions. For both parametric and semiparametric models, the frailties are modeled via an intrinsic Gaussian conditional autoregressive prior distribution with the kinship matrix being the adjacency matrix connecting subjects. Simulation studies and applications to the Arabidopsis thaliana line flowering time data sets demonstrated the advantage of the new proposals over existing approaches.  相似文献   

19.
The generation time of organisms drives the rate of change in populations and across evolutionary times. In long‐lived species, generation time should also account for overlapping generations, and the average age of parents has been proposed as a best approximation under these conditions. This study uses this definition to estimate the generation time of a widely studied small primate, Microcebus murinus, based on parentage data generated for a free‐living population over a 6‐year period in northwestern Madagascar. The average age of parents was calculated separately for mothers and fathers of three different offspring cohorts that differed in the degree of demographic uncertainty. In addition, adult survival rates were calculated for males and females based on long‐term capture data from the same population to estimate the possible upper limits of generation time. Adult survival was low with only 44% of adult females and 38% of adult males being recaptured at the beginning of their second breeding season. The average age of mothers was 1.56–1.91 years, pointing toward a 2‐year female generation time due to the high proportion of 1‐year old mothers in all three cohorts. Female generation time estimates were fairly stable across the three offspring cohorts. In contrast, the average age of fathers differed by more than 1 year from the first to the third offspring cohort (1.71–2.83 years) pointing toward a 3‐year generation time, but also suggesting a higher degree of demographic uncertainty in the early years of the study. For future modeling purposes, we, therefore, propose to use the average, 2.5 years, of male and female values as new estimate for the generation time of mouse lemurs.  相似文献   

20.
1. Using data on breeding birds from a 35-year study of Florida scrub-jays Aphelocoma coerulescens (Bosc 1795), we show that survival probabilities are structured by age, birth cohort, and maternal family, but not by sex. Using both accelerated failure time (AFT) and Cox proportional hazard models, the data are best described by models incorporating variation among birth cohorts and greater mortality hazard with increasing age. AFT models using Weibull distributions with the shape parameter > 1 were always the best-fitting models. 2. Shared frailty models allowing for family structure greatly reduce model deviance. The best-fitting models included a term for frailty shared by maternal families. 3. To ask how long a data set must be to reach qualitatively the same conclusions, we repeated the analyses for all possible truncated data sets of 2 years in length or greater. Length of the data set affects the parameter estimates, but not the qualitative conclusions. In all but three of 337 truncated data sets the best-fitting models pointed to same conclusions as the full data set. Shared frailty models appear to be quite robust. 4. The data are not adequate for testing hypotheses as to whether variation in frailty is heritable. 5. Substantial structured heterogeneity for survival exists in this population. Such structured heterogeneity has been shown to have substantial effects in reducing demographic stochasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号