首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Abstract: The coral genus Isopora, a sister group of the modern dominant Acropora until now only known from the Pliocene to Recent of the Indo‐Pacific, is recorded in the Caribbean for the first time. Two new species, Isopora ginsburgi and Isopora curacaoensis, are described from the Neogene Seroe Domi Formation of Curaçao, Netherlands Antilles. Study of large collections made systematically through the sequence indicates that Isopora first occurred in the Caribbean during the Mio–Pliocene, at approximately the same time as the origination of many modern Caribbean reef coral dominants including Acropora cervicornis. It last occurred in the region during the late Pliocene as part of a pulse of extinction, in which several genera that live today in the Indo‐Pacific became extinct in the Caribbean. Throughout its Caribbean duration, Isopora co‐occurred with the two abundant modern Caribbean species of Acropora, A. cervicornis and A. palmata. Comparisons with Neogene collections made elsewhere in the Caribbean indicate that Isopora was restricted in distribution to the southern Caribbean. Isopora species are viviparous, while Acropora are oviparous, and this difference in reproductive strategy may have played a role in the extinction of Isopora in the Caribbean. The occurrences of Isopora reported in this study are the oldest records to date of Isopora worldwide, and are important for understanding the biogeographic separation between reef coral faunas in the Caribbean and Indo‐Pacific regions.  相似文献   

2.
3.
    
Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.  相似文献   

4.
    
Abstract. Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14–20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1°–30.0°C in mean increments of 0.4±0.1°C (±SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5°C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4°–27.7°C, and were smallest and had the lowest population densities at 25.8°C and 28.8°C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1°C and 30°C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.  相似文献   

5.
    
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   

6.
    
The composition and trophic structure of reef fish communities in two natural and two artificial reefs along the coast of Paraíba State in north‐eastern Brazil were investigated. A total of 114 species of fish belonging to 47 families were recorded during 120 stationary visual surveys, slightly less than half (46·55%) of which were recorded at all four surveyed localities. Most species are widely distributed on the western Atlantic coast, but several are endemic to Brazil. The greatest diversity and equitability indexes were recorded at the reefs of Sapatas and Cabeço dos Cangulos, whereas the greatest richness and abundance were found at the Queimado shipwreck. The Alvarenga shipwreck reef had the least richness, diversity and equitability. The four localities studied had very similar ichthyofaunas, especially in relation to species composition. The reefs along the Paraíba coast are considered priority conservation areas by the Brazilian Ministry of the Environment, and the information generated by this study will be useful for comparison with other reefs in the region and can be directly applied to programmes seeking to protect and manage these environments.  相似文献   

7.
The small and ill-known tropical chlorophyte, Brybesia johannae Weber-van Bosse, is redescribed on the basis of living material from the coral reef of Curacao, Netherlands Antilles. Additional records are given from the Canary Islands. One species, B. johannae, is recognized (including, B. cylindrocarpa Howe 1920), and this probably has a wide Atlantic and Indo-Pacific tropical distribution. Bryobesia is not related to Bryopsis and Derbesia (Caulerpales), but belongs to the Cladophorales. It appears to be a rudimentary Cladophora.  相似文献   

8.
Recruitment plays an important role in the population dynamics of marine organisms and is often quantified as a surrogate for settlement. When quantified, recruitment includes settlement plus a period of time in the benthic habitat. Therefore, it is essential to determine whether post-settlement processes alter patterns established at settlement. I conducted a series of experiments on 2.0 m2 patch reefs to examine the importance of pre- and post-settlement processes to the distribution and abundance of recruits of the stoplight parrotfish, Sparisoma viride, on the Tague Bay reef, St. Croix, USVI. Recruitment was higher to the coral Porites porites than to another common coral Montastrea annularis, but there was no evidence of microhabitat choice at settlement. This result, in conjunction with the examination of the size classes of recruits present on P. porites and M. annularis patch reefs in a separate experiment suggested that differences in recruitment were established after settlement. Stoplights settled in higher numbers to patch reefs that contained conspecific residents, and persistence was higher at higher recruit density. Although resident damselfish directed significant amounts of agonistic behavior towards newly stoplight recruits, damselfish presence had no effect on settlement. However, damselfish presence did reduce stoplight recruitment. These results demonstrate that both pre- and post-settlement processes influence the recruitment of stoplight parrotfish. More importantly, these results indicate that benthic processes can alter recruitment patterns from initial settlement patterns, and indicate that workers should be careful in using recruitment as a proxy for settlement.  相似文献   

9.
    
  1. The deep reef refugia hypothesis (DRRH) predicts that deep reef ecosystems may act as refugium for the biota of disturbed shallow waters. Because deep reefs are among the most understudied habitats on Earth, formal tests of the DRRH remain scarce. If the DRRH is valid at the community level, the diversity of species, functions, and lineages of fish communities of shallow reefs should be encapsulated in deep reefs.
  2. We tested the DRRH by assessing the taxonomic, functional, and phylogenetic diversity of 22 Brazilian fish communities between 2 and 62 m depth. We partitioned the gamma diversity of shallow (<30 m) and deep reefs (>30 m) into independent alpha and beta components, accounted for species’ abundance, and assessed whether beta patterns were mostly driven by spatial turnover or nestedness.
  3. We recorded 3,821 fishes belonging to 85 species and 36 families. Contrary to DRRH expectations, only 48% of the species occurred in both shallow and deep reefs. Alpha diversity of rare species was higher in deep reefs as expected, but alpha diversity of typical and dominant species did not vary with depth. Alpha functional diversity was higher in deep reefs only for rare and typical species, but not for dominant species. Alpha phylogenetic diversity was consistently higher in deep reefs, supporting DRRH expectations.
  4. Profiles of taxonomic, functional, and phylogenetic beta diversity indicated that deep reefs were not more heterogeneous than shallow reefs, contradicting expectations of biotic homogenization near sea surface. Furthermore, pairwise beta‐diversity analyses revealed that the patterns were mostly driven by spatial turnover rather than nestedness at any depth.
  5. Conclusions. Although some results support the DRRH, most indicate that the shallow‐water reef fish diversity is not fully encapsulated in deep reefs. Every reef contributes significantly to the regional diversity and must be managed and protected accordingly.
  相似文献   

10.
Previous studies have demonstrated that coral and algal calcification is tightly regulated by the calcium carbonate saturation state of seawater. This parameter is likely to decrease in response to the increase of dissolved CO2 resulting from the global increase of the partial pressure of atmospheric CO2. We have investigated the response of a coral reef community dominated by scleractinian corals, but also including other calcifying organisms such as calcareous algae, crustaceans, gastropods and echinoderms, and kept in an open‐top mesocosm. Seawater pCO2 was modified by manipulating the pCO2 of air used to bubble the mesocosm. The aragonite saturation state (Ωarag) of the seawater in the mesocosm varied between 1.3 and 5.4. Community calcification decreased as a function of increasing pCO2 and decreasing Ωarag. This result is in agreement with previous data collected on scleractinian corals, coralline algae and in a reef mesocosm, even though some of these studies did not manipulate CO2 directly. Our data suggest that the rate of calcification during the last glacial maximum might have been 114% of the preindustrial rate. Moreover, using the average emission scenario (IS92a) of the Intergovernmental Panel on Climate Change, we predict that the calcification rate of scleractinian‐dominated communities may decrease by 21% between the pre‐industrial period (year 1880) and the time at which pCO2 will double (year 2065).  相似文献   

11.
    
Climate change threatens coral reefs across the world. Intense bleaching has caused dramatic coral mortality in many tropical regions in recent decades, but less obvious chronic effects of temperature and other stressors can be equally threatening to the long‐term persistence of diverse coral‐dominated reef systems. Coral reefs persist if coral recovery rates equal or exceed average rates of mortality. While mortality from acute destructive events is often obvious and easy to measure, estimating recovery rates and investigating the factors that influence them requires long‐term commitment. Coastal development is increasing in many regions, and sea surface temperatures are also rising. The resulting chronic stresses have predictable, adverse effects on coral recovery, but the lack of consistent long‐term data sets has prevented measurement of how much coral recovery rates are actually changing. Using long‐term monitoring data from 47 reefs spread over 10 degrees of latitude on Australia's Great Barrier Reef (GBR), we used a modified Gompertz equation to estimate coral recovery rates following disturbance. We compared coral recovery rates in two periods: 7 years before and 7 years after an acute and widespread heat stress event on the GBR in 2002. From 2003 to 2009, there were few acute disturbances in the region, allowing us to attribute the observed shortfall in coral recovery rates to residual effects of acute heat stress plus other chronic stressors. Compared with the period before 2002, the recovery of fast‐growing Acroporidae and of “Other” slower growing hard corals slowed after 2002, doubling the time taken for modest levels of recovery. If this persists, recovery times will be increasing at a time when acute disturbances are predicted to become more frequent and intense. Our study supports the need for management actions to protect reefs from locally generated stresses, as well as urgent global action to mitigate climate change.  相似文献   

12.
    
Marine symbioses are integral to the persistence of ecosystem functioning in coral reefs. Solitary corals of the species Heteropsammia cochlea and Heterocyathus aequicostatus have been observed to live in symbiosis with the sipunculan worm Aspidosiphon muelleri muelleri, which inhabits a cavity within the coral, in Zanzibar (Tanzania). The symbiosis of these photosymbiotic corals enables the coral holobiont to move, in fine to coarse unconsolidated substrata, a process termed as “walking.” This allows the coral to escape sediment cover in turbid conditions which is crucial for these light‐dependent species. An additional commensalistic symbiosis of this coral‐worm holobiont is found between the Aspidosiphon worm and the cryptoendolithic bivalve Jousseaumiella sp., which resides within the cavity of the coral skeleton. To understand the morphological alterations caused by these symbioses, interspecific relationships, with respect to the carbonate structures between these three organisms, are documented using high‐resolution imaging techniques (scanning electron microscopy and µCT scanning). Documenting multi‐layered symbioses can shed light on how morphological plasticity interacts with environmental conditions to contribute to species persistence.  相似文献   

13.
Variation in posing behaviour among fish species visiting cleaning stations   总被引:2,自引:0,他引:2  
The adaptive significance of posing behaviour by fish visiting cleaning stations on a Barbadian fringing reef was investigated. The probability of a visitor being cleaned by cleaning gobies ( Elacatinus spp.) was significantly higher after posing than after failing to pose upon arrival at a cleaning station. Despite this, not all visitors posed, and there was much variation among species in tendency to pose. This interspecific variation was not related to the probability of being cleaned, either after posing or after failing to pose, nor was it related to trophic level or fish total length. The latter was true both for cross-species analyses and phylogenetically independent contrasts. A cost-benefit model is proposed to understand interspecific variation in posing behaviour, which considers both decisions by clients and by cleaners. As well as explaining the results, this may reconcile differences among anecdotal and experimental observations from previous studies.  相似文献   

14.
    
Hydrozoans of the genus Zanclea have been acknowledged only recently as a fundamental component of the highly diverse fauna associated with reef‐building scleractinian corals. Although widely distributed in coral reefs and demonstrated to be important in protecting corals from predation and diseases, the biodiversity of these hydrozoans remains enigmatic due to the paucity of available morphological characters, incomplete morphological characterisations and the possible existence of cryptic species. Recently, molecular techniques have revealed the existence of multiple hidden genetic lineages not yet supported by diagnostic morphological characters. In this work, we further explore the morpho‐diversity of three genetic lineages, namely Zanclea associated with the coral genera Goniastrea (clade I), Porites (clade II) and Pavona (clade VI). Aside from providing a complete classical characterisation of the polyp and medusa stage of each clade, we searched for new potential taxonomic indicators either on symbiotic hydroids or on host corals. On the hydroids, statistical analyses on almost 7,000 nematocyst capsules revealed a significant difference in terms of nematocyst size among the three Zanclea clades investigated. On each host coral genus, we identified peculiar skeletal modifications related to the presence of Zanclea symbionts. Lastly, we discussed the potential diagnostic value of these footprints in the characterisation of Zanclea–scleractinian associations.  相似文献   

15.
  总被引:2,自引:0,他引:2  
Corals and coral reefs confront us with a variety of paradoxes in terms of their responses to global change. The species appear evolutionarily long-lived and stable, and combinations of organisms recur and persist at levels ranging from endosymbiosis to palaeocommunity structure. The fact that these organisms and communities occupy a seemingly precarious environment near the common interface of land, sea, and air suggests that they possess powerful adaptive and acclimative mechanisms, and the special characteristics associated with their range of reproductive options, their modular (colonial) form, and their symbiotic associations provide multiple pathways for adaptation. At the same time, they are widely considered to be vulnerable to anthropogenic stresses, and to show signs of deterioration on a global scale. Interest in corals is further enhanced by their unique position with regard to the carbon cycle, with inorganic and organic carbon metabolisms that are of comparable magnitudes. The durable limestone structures they create modify the shallow-water environment, and their mineral skeletons preserve in their isotopic, chemical, and structural characteristics records of past environmental conditions. Whether as survivors, recorders, or victims, their relationship to global change is fascinating and instructive. This paper provides a general background and context for the specific papers that make up this topical issue of Global Change Biology.  相似文献   

16.
    
  1. While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.
  2. Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.
  3. The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.
  4. Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.
  5. Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.
  相似文献   

17.
    
Changes in the carbonate chemistry of coral reef waters are driven by carbon fluxes from two sources: concentrations of CO2 in the atmospheric and source water, and the primary production/respiration and calcification/dissolution of the benthic community. Recent model analyses have shown that, depending on the composition of the reef community, the air‐sea flux of CO2 driven by benthic community processes can exceed that due to increases in atmospheric CO2 (ocean acidification). We field test this model and examine the role of three key members of benthic reef communities in modifying the chemistry of the ocean source water: corals, macroalgae, and sand. Building on data from previous carbon flux studies along a reef‐flat transect in Moorea (French Polynesia), we illustrate that the drawdown of total dissolved inorganic carbon (CT) due to photosynthesis and calcification of reef communities can exceed the draw down of total alkalinity (AT) due to calcification of corals and calcifying algae, leading to a net increase in aragonite saturation state (Ωa). We use the model to test how changes in atmospheric CO2 forcing and benthic community structure affect the overall calcification rates on the reef flat. Results show that between the preindustrial period and 1992, ocean acidification caused reef flat calcification rates to decline by an estimated 15%, but loss of coral cover caused calcification rates to decline by at least three times that amount. The results also show that the upstream–downstream patterns of carbonate chemistry were affected by the spatial patterns of benthic community structure. Changes in the ratio of photosynthesis to calcification can thus partially compensate for ocean acidification, at least on shallow reef flats. With no change in benthic community structure, however, ocean acidification depressed net calcification of the reef flat consistent with findings of previous studies.  相似文献   

18.
Coral bleaching: the winners and the losers   总被引:11,自引:0,他引:11  
Sea surface temperatures were warmer throughout 1998 at Sesoko Island, Japan, than in the 10 preceding years. Temperatures peaked at 2.8 °C above average, resulting in extensive coral bleaching and subsequent coral mortality. Using random quadrat surveys, we quantitatively documented the coral community structure one year before and one year after the bleaching event. The 1998 bleaching event reduced coral species richness by 61% and reduced coral cover by 85%. Colony morphology affected bleaching vulnerability and subsequent coral mortality. Finely branched corals were most susceptible, while massive and encrusting colonies survived. Most heavily impacted were the branched Acropora and pocilloporid corals, some of which showed local extinction. We suggest two hypotheses whose synergistic effect may partially explain observed mortality patterns (i.e. preferential survival of thick-tissued species, and shape-dependent differences in colony mass-transfer efficiency). A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species.  相似文献   

19.
Man-made submerged structures, including shipwrecks, offering substrata for fouling organisms and fish, have been classified secondarily as artificial reefs (ARs). The current approach in AR design is that of low-profile structures placed on the seabed and attempting to mimic natural reef (NR) communities with the aim of mitigating degraded marine ecosystems. To examine the validity of this concept, a long-term comparison of the developing AR fouling communities to those of nearby NRs is required. A survey of the fouling reefal organisms was conducted on seven shipwrecks (Red Sea, Egypt), comprising three young (ca 20 years old) and four old (?>?100 years old) unplanned ARs, in comparison to nearby NR communities. The hypothesis tested was that the age of the ARs shapes the structure of their fouling coral communities. The results demonstrated distinct differences between ARs and NRs and between young and old ARs. While the species composition on ARs may resemble that of NRs after approximately 20 years, obtaining a similar extent of coral cover may require a full century. Moreover, differences in structural features between ARs and NRs may lead to differences in species composition that persist even after 100 years.  相似文献   

20.
Gerald T. Lang 《Zoo biology》1993,12(5):425-433
The coral reef mesocosms designed by the Smithsonian Institution's Dr. Walter Adey, his Marine System Laboratory personnel, and staff members of the Pittsburgh Aqua-Zoo simulate most of the physical, chemical, and biological parameters found in natural Caribbean coral reefs. After developing the mesocosm in Pittsburgh, an evaluation and comparison between natural reef seawater sources and closed mesocosm seawater conditions indicated that an additional parameter should be investigated. It was hypothesized that, given time, the aragonite- and calcite (CaCO3 crystal forms)-producing organisms in the closed mesocosms could deplete the seawater of available Ca2+ and substitutive Sr2+. Atomic absorption spectrophotometry was utilized to determine concentrations in the seawater over time. Results showed a substantial reduction in dissolved Ca and Sr in the mesocosm after approximately two years. Dissolved aragonitic Halimeda algae parts were put into the system for replacive purposes. In terms of the biogeochemical cycling of Ca2+ and Sr2+, the coral reef mesocosm organisms behaved similarly to natural reefs, which have a constant supply of dissolved Ca2+ and Sr2+. Further research utilizing radiolabeled sources of Ca2+, Sr2+, and Mg2+, in conjunction with in vivo scanning electron microscopy (SEM) and growth increment studies, are recommended for determining the exact biogeochemical pathways for these elements in coral reefs, and to quantify growth parameters. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号