首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized senile plaques (SPs) immunohistochemically in cynomolgus monkey brains and also examined age-related biochemical changes of Alzheimer's disease (AD)-associated proteins in these brains from monkeys of various ages. In the neocortex of aged monkeys (>20 years old), we found SPs but no neurofibrillary tangles (NFTs). Antibodies against beta-amyloid precursor protein (APP) or apolipoprotein E (ApoE) stained SPs; however, the pattern of immunostaining was different for the two antigens. APP was present only in swollen neurites, but ApoE was present throughout all parts of SPs. Western blot analysis revealed that the pattern of APP expression changed with age. Although full-length APP695 protein was mainly expressed in brains from young monkeys (4-years-old), the expression of full-length APP751 protein was increased in brains from older monkeys (>20 years old). Biochemical analyses also showed that levels of various AD-associated proteins increased significantly with age in nerve ending fractions. Both SP-associated (APP) and NFT-associated proteins (tau, activated glycogen synthase kinase 3beta, cyclin dependent kinase 5, p35, and p25) accumulated in the nerve ending fraction with increasing age; however, we found no NFTs or paired helical filaments of tau in aged cynomolgus monkey brains. This age-related accumulation of these proteins in the nerve ending fraction was similar to that observed in our laboratory previously for presenilin-1 (PS-1). The accumulation of these SP-associated proteins in this fraction may be a causal event in the spontaneous formation of SPs; thus, SPs may be formed initially in nerve endings. Taken together, these results suggest that intensive investigation of age-related changes in the nerve ending and in axonal transport will contribute to a better understanding of the pathogenesis of neurodegenerative disorders such as AD.  相似文献   

2.
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales—3 CSIs and 169 SPs, Thermoproteales—5 CSIs and 25 SPs, Desulfurococcales—4 SPs, and Sulfolobales and Desulfurococcales—2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.  相似文献   

3.
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed.  相似文献   

4.
Both Alzheimer's disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term "tauopathies" for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-β toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.  相似文献   

5.
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and neurofibrillary tangles (NFTs) associated with neuroinflammation and neuronal degeneration. Hippocampus is one of the earliest and severely damaged areas in AD brain. Glia maturation factor (GMF), a known proinflammatory molecule is up-regulated in AD. Here, we have investigated the expression and distribution of GMF in relation to the distribution of APs and NFTs in the hippocampus of AD brains. Our immunohistochemical results showed GMF is expressed specifically in the vicinity of high density of APs and NFTs in the hippocampus of AD patients. Moreover, reactive astrocytes and activated microglia surrounds the APs and NFTs. We further demonstrate that GMF immunoreactive glial cells were increased at the sites of Tau containing NFTs and APs of hippocampus in AD brains. In conclusion, up-regulated expression of GMF in the hippocampus, and the co-localization of GMF and thioflavin-S stained NFTs and APs suggest that GMF may play important role in the pathogenesis of AD.  相似文献   

6.
Although Pyrococcus furiosus is one of the best studied hyperthermophilic archaea, to date no experimental investigation of the extent of protein secretion has been performed. We describe experimental verification of the extracellular proteome of P. furiosus grown on starch. LC–MS/MS-based analysis of culture supernatants led to the identification of 58 proteins. Fifteen of these proteins had a putative N-terminal signal peptide (SP), tagging the proteins for translocation across the membrane. The detected proteins with predicted SPs and known function were almost exclusively involved in important extracellular functions, like substrate degradation or transport. Most of the 43 proteins without predicted N-terminal signal sequences are known to have intracellular functions, mainly (70 %) related to intracellular metabolism. In silico analyses indicated that the genome of P. furiosus encodes 145 proteins with N-terminal SPs, including 21 putative lipoproteins and 17 with a class III peptide. From these we identified 15 (10 %; 7 SPI, 3 SPIII and 5 lipoproteins) under the specific growth conditions of this study. The putative lipoprotein signal peptides have a unique sequence motif, distinct from the motifs in bacteria and other archaeal orders.  相似文献   

7.
Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and hyperphosphorylated Tau containing neurofibrillary tangles (NFTs) and is associated with neuroinflammation and neurodegeneration. Entorhinal cortex (Brodmann’s area 28) is involved in memory associated functions and is one of the first brain areas targeted to form the neuropathological lesions and also severely affected cortical region in AD. Glia maturation factor (GMF), a central nervous system protein and a proinflammatory molecule is known to be up-regulated in the specific areas of AD brain. Our previous immunohistochemical studies using temporal cortex showed that GMF is expressed in the vicinity of APs and NFTs in AD brains. In the present study, we have analyzed the expression of GMF and its association with APs and NFTs in the entorhinal cortex of AD brains by using immunohistochemistry combined with thioflavin-S fluorescence labeling methods. Results showed that GMF immunoreactive glial cells, glial fibrillary acidic protein labeled reactive astrocytes and ionized calcium binding adaptor molecule-1 labeled activated microglia were increased in the entorhinal cortical layers especially at the sites of 6E10 labeled APs and Tau containing NFTs. In conclusion, increased expression of GMF by the glial cells in the entorhinal cortex region, and the co-localization of GMF with APs and NFTs suggest that GMF may play important proinflammatory roles in the pathogenesis of AD.  相似文献   

8.
Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing irreversible brain damage to the elderly and presents a major public health challenge. Clinical research and genome-wide association studies have suggested a potential contribution of the endocytic pathway to AD, with an emphasis on common loci. However, the contribution of rare variants in this pathway to AD has not been thoroughly investigated. In this study, we focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden analysis using genes in the endocytic pathway on over 3,000 individuals with European ancestry from three large whole-genome sequencing (WGS) studies. We identified significant associations of rare-variant burden within the endocytic pathway with AD, which were successfully replicated in independent datasets. We further demonstrated that this endocytic rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset, and earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to identify single endocytic genes associated with AD and NFTs. Careful examination using NFTs revealed one significantly associated gene, ANKRD13D. To identify functional associations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two endocytic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant influences on their gene expressions. Differential expressions between AD patients and controls of these three identified genes were further examined by incorporating scRNA-Seq data from 48 post-mortem brain samples and demonstrated distinct expression patterns across cell types. Taken together, our results demonstrated strong rare-variant effect in the endocytic pathway on AD risk and progression and functional effect of gene expression alteration in both bulk and single-cell resolution, which may bring more insight and serve as valuable resources for future AD genetic studies, clinical research, and therapeutic targeting.  相似文献   

9.
Globally Alzheimer's disease (AD) is a highly complex, heterogeneous, and multifactorial neurological disease. AD is categorized clinically through a steady loss in memory and progressive decline of cognitive function. So far, there is no effective cure is available for the treatment of AD. Here, we identified Plant-based compounds (PBCs) from seven therapeutic plants through pharmacophore and pharmacokinetics approaches. Subsequently, we retrieved 65 AD associated proteins by Text Mining approach .We observed the interactions between 39 PBCs with 65 AD-associated targets by using molecular docking. Further, we carried out Molecular dynamics simulation analysis to predict the steady binding of top drug-target complexes. The entire MD simulation results analysis was evidence that seven drug-target complexes consistently interacted during the in silico experiment. The top complexes were the target CHLE interacted with 2 PBCs (Pseudojujubogenin and Anahygrine), target VDAC1 interacted with Withanolide R, target THOP1 interacted with Withaolide R, target AOFB interacted with 2 PBCs (Nardostachysin and Viscosalactone B), and target ACHE interacted with the drug (12-Deoxywithastramonolide). These PBCs have stably and flexibly interacted at the protein‘s active site region. Our results suggest that these PBCs and targets are potential therapeutic candidates for molecular development in AD.  相似文献   

10.
No systematic searches for differential expression of signaling proteins (SP) in undifferentiated vs. differentiated cell lineages were published and herein we used protein profiling for this purpose. The N1E-115 cell line was cultivated and an aliquot was differentiated with dimethylsulfoxide (DMSO), that is known to lead to a neuronal phenotype. Cell lysates were prepared, run on two-dimensional gel electrophoresis followed by MALDI-TOF-TOF identification of proteins and maps of identified SPs were generated. Seven SPs were comparable, 27 SPs: GTP-binding/Ras-related proteins, kinases, growth factors, calcium binding proteins, phosphatase-related proteins were observed in differentiated N1E-115 cells and eight SPs of the groups mentioned above were observed in undifferentiated cells only. Switching-on/off of several individual SPs from different signaling cascades during the differentiation process is a key to understand mechanisms involved. The findings reported herein are challenging in vitro and in vivo studies to confirm a functional role for deranged SPs.  相似文献   

11.
Alzheimer's disease (AD) is characterized by the presence, in the brain of the patients, of two aberrant structures: intracellular neurofibrillary tangles (NFTs), containing an abnormal hyperphosphorylated form of tau protein, and extracellular senile plaques (SPs), mainly composed by fibrillar amyloid beta peptide. Another feature of AD is the neurodegeneration and dysfunction of basal forebrain cholinergic system. A possible connection among those AD characteristics could occur. Thus, the purpose of this short review is to summarize the involvement of nicotinic (nAChR) and muscarinic (mAChR) receptors on tau phosphorylation, in a direct way, or through the previous interaction of some of these receptors with amyloid beta. Several studies have demonstrated that nAChR activation results in a significantly increase of tau phosphorylation, whereas mAChR activation, may prevent tau phosphorylation.  相似文献   

12.
The proinflammatory enzyme 5-lipoxygenase (5-LOX) is upregulated in Alzheimer''s disease (AD), but its localization and association with the hallmark lesions of the disease, β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs), is unknown. This study examined the distribution and cellular localization of 5-LOX in the medial temporal lobe from AD and control subjects. The spatial relationship between 5-LOX immunoreactive structures and AD lesions was also examined. We report that, in AD subjects, 5-LOX immunoreactivity is elevated relative to controls, and its localization is dependent on the antibody-targeted portion of the 5-LOX amino acid sequence. Carboxy terminus–directed antibodies detected 5-LOX in glial cells and neurons, but less frequently in neurons with dystrophic (NFT) morphology. In contrast, immunoreactivity observed using 5-LOX amino terminus–directed antibodies was virtually absent in neurons and abundant in NFTs, neuritic plaques, and glia. Double-labeling studies showed a close association of 5-LOX–immunoreactive processes and glial cells with Aβ immunoreactive plaques and vasculature and also detected 5-LOX in tau immunoreactive and amyloid containing NFTs. Different immunolabeling patterns with antibodies against carboxy vs amino terminus of 5-LOX may be caused by post-translational modifications of 5-LOX protein in Aβ plaques and NFTs. The relationship between elevated intracellular 5-LOX and hallmark AD pathological lesions provides further evidence that neuroinflammatory pathways contribute to the pathogenesis of AD. (J Histochem Cytochem 56:1065–1073, 2008)  相似文献   

13.
Alzheimer's disease is a progressive neurodegenerative disease associated with loss of memory and cognition. One hallmark of AD is the accumulation of amyloid beta-peptide (Abeta), which invokes a cascade of oxidative damage to neurons that can eventually result in neuronal death. Several markers of oxidative stress have been identified in AD brain, thus providing greater understanding into potential mechanisms involved in the disease pathogenesis and progression. In the present article, we review the application of redox proteomics to the identification of oxidized proteins in AD brain and also our recent findings on amyloid beta-peptide (Abeta)-associated in vivo and in vitro models of AD. Our redox proteomics approach has made possible the identification of specifically oxidized proteins in Alzheimer's disease (AD) brain, providing for the first time evidence on how oxidative stress plays a crucial role in AD-related neurodegeneration. The information obtained has great potential to aid in determining the molecular pathogenesis in and detecting disease markers of AD, as well as identifying potential targets for drug therapy in AD. Application of redox proteomics to study cellular events, especially related to disease dysfunction, may provide an efficient tool to understand the main mechanisms involved in the pathogenesis and progression of oxidative stress-related neurodegenerative disorders.  相似文献   

14.
《TARGETS》2003,2(4):147-153
The most effective targeted cancer therapies have arisen from research into genetically altered oncogenes, including BCR-ABL, HER2, RAS and EGFR. Recent advances in cancer genetics have identified many regions of the genome that undergo amplification (increase in copy number) but, in most cases, the key oncogenic targets driving the growth and survival of cancer cells remain unknown. In this review, we discuss high-throughput technologies for the discovery of putative oncogenes, and clinical and functional validation of these genes as targets for therapy. New technologies in translational genomics facilitate the identification, validation and prioritization of candidate molecular targets for anti-cancer therapy.  相似文献   

15.
The Escherichia coli chaperonin machinery, GroEL, assists the folding of a number of proteins. We describe a sequence-based approach to identify the natural substrate proteins (SPs) for GroEL. Our method is based on the hypothesis that natural SPs are those that contain patterns of residues similar to those found in either GroES mobile loop and/or strongly binding peptide in complex with GroEL. The method is validated by comparing the predicted results with experimentally determined natural SPs for GroEL. We have searched for such patterns in five genomes. In the E. coli genome, we identify 1422 (about one-third) sequences that are putative natural SPs. In Saccharomyces cerevisiae, 2885 (32%) of sequences can be natural substrates for Hsp60, which is the analog of GroEL. The precise number of natural SPs is shown to be a function of the number of contacts an SP makes with the apical domain (N(C)) and the number of binding sites (N(B)) in the oligomer with which it interacts. For known SPs for GroEL, we find approximately 4 < N(C) < 5 and 2 相似文献   

16.
Identification of the molecular target is a crucial step in evaluating novel antibiotics. To support target identification, a label‐free method based on chromatographic co‐elution has previously been developed. Target identification by chromatographic coelution (TICC) exploits the alteration of the elution profile of target‐bound drug versus free drug in ion exchange (IEX) chromatography to identify potential target proteins from elution fractions. The applicability of TICC for antibiotic research is investigated by evaluating which proteins, that is, putative targets, can be monitored in Bacillus subtilis. Coelution of components of known protein complexes provides a read‐out for how well the native state of proteins is conserved during chromatography. Rifampicin, which targets RNA polymerase, is used in a proof‐of‐concept study.  相似文献   

17.
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.  相似文献   

18.
何崔同  张瑶  姜颖  徐平 《生物工程学报》2018,34(11):1860-1869
小蛋白质 (Small proteins,SPs) 是由小开放阅读框 (Short open reading frames,sORFs) 编码长度小于100个氨基酸的多肽。研究发现小蛋白质参与了基因表达调控、细胞信号转导和代谢等重要生物学过程。然而,生命体中大多数的已注释小蛋白质尚缺少蛋白水平存在的实验证据,被称为漏检蛋白 (Missing proteins,MPs)。小蛋白质的高效鉴定是其功能研究的前提,也有助于挖掘“漏检蛋白”。文中采用小蛋白质富集策略鉴定到72个酵母小蛋白质,验证9个“漏检蛋白”,发现低分子量、高疏水性、膜结合、弱密码子使用偏性及不稳定性是蛋白漏检的主要原因,对进一步的技术优化具有指导意义。  相似文献   

19.
The emergence of antibiotic resistance in bacterial pathogens poses a great challenge to public health and emphasizes the need for new antimicrobial targets. The recent development of microbial genomics and the availability of genome sequences allows for the identification of essential genes which could be novel and potential targets for antibacterial drugs. However, these predicted targets need experimental validation to confirm essentiality. Here, we report on experimental validation of a two potential targets in the lipopolysaccharide (LPS) biosynthesis pathway of the pathogen Pseudomonas aeruginosa PAO1 using insertion duplication. Two genes, kdsA and waaG, from LPS encoding proteins 2-dehydro-3-deoxyphosphooctonate aldolase and UDP-glucose (heptosyl) LPS α-1,3-glucosyltransferase were selected as putative target candidates for the gene disruption experiments using plasmid insertion mutagenesis to determine essentiality. The introduction of a selectable ampicillin and kanamycin resistance marker into the chromosome resulted in lack of recovery of antibiotic-resistant colonies suggesting the essentiality of these genes for the survival of P. aeruginosa. Several molecular analyses were carried out in order to confirm the essentiality of these genes. We propose that the above two validated drug targets are essential and can be screened for functional inhibitors for the discovery of novel therapeutic compounds against antibiotic-resistant opportunistic pathogen P. aeruginosa.  相似文献   

20.
The reversible phosphorylation of proteins regulates most biological processes, while abnormal phosphorylation is a cause or consequence of many diseases including Alzheimer''s disease (AD). One of the hallmarks of AD is the formation of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau proteins. Sodium selenate has been recently found to reduce tau hyperphosphorylation and NFTs formation, and to improve spatial learning and motor performance in AD mice. In the current study, the phosphoproteomics of N2aSW cells treated with selenate were investigated. To avoid missing low-abundance phosphoproteins, both the total proteins of cells and the phosphor-enriched proteins were extracted and subjected to the two-dimensional gel electrophoresis with Pro-Q diamond staining and then LC-MS/MS analysis. A total of 65 proteins were altered in phosphorylation level, of which 39 were up-regulated and 26 were down-regulated. All identified phosphoproteins were bioinformatically annotated according to their physiochemical features, subcellular location, and biological function. Most of these significantly changed phosphoproteins are involved in crucial neural processes such as protesome activity, oxidative stress, cysteine and methionine metabolism, and energy metabolism. Furthermore, decreases were found in homocysteine, phosphor-tau and amyloid β upon selenate treatment. Our results suggest that selenate may intervene in the pathological process of AD by altering the phosphorylation of some key proteins involved in oxidative stress, energy metabolism and protein degradation, thus play important roles in maintaining redox homeostasis, generating ATP, and clearing misfolded proteins and aggregates. The present paper provides some new clues to the mechanism of selenate in AD prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号