共查询到6条相似文献,搜索用时 3 毫秒
1.
Benedetti F Dallaspezia S Fulgosi MC Barbini B Colombo C Smeraldi E 《Chronobiology international》2007,24(5):921-937
The combination of total sleep deprivation (TSD) and light therapy (LT) in bipolar depression causes rapid antidepressant effects, and its mechanism of action has been hypothesized to involve the enhancement of all of the monoaminergic systems targeted by antidepressant drugs (serotonin, dopamine, norepinephrine). It is still unknown if the clinical effects are paralleled by changes in biological rhythms. In a before/after design of a study of biological correlates of response, 39 inpatients affected by Type I Bipolar Disorder whose current depressive episode was without psychotic features were treated for one week with repeated TSD combined with morning LT. Wrist actigraphy was recorded throughout the study. Two-thirds of the patients responded to treatment (50% reduction in Hamilton Depression score). Responders showed an increase in daytime activity, phase-advance of the activity-rest rhythm of 57 min compared to the pre-treatment baseline, and reduced nighttime sleep. Non-responders did not show significant changes in the parameters of their activity-rest rhythm. Phase advance of the activity-rest rhythm is an actimetric correlate of the antidepressant response to TSD and LT in bipolar depression. Results are consistent with the known effects of sleep-wake manipulations and neurotransmitter function on the suprachiasmatic nucleus. 相似文献
2.
Haruna Fukushige Yumi Fukuda Mizuho Tanaka Kaoru Inami Kai Wada Yuki Tsumura Masayuki Kondo Tetsuo Harada Tomoko Wakamura Takeshi Morita 《Journal of physiological anthropology》2014,33(1)
Background
The purpose of the present study is to investigate effects of tryptophan intake and light exposure on melatonin secretion and sleep by modifying tryptophan ingestion at breakfast and light exposure during the daytime, and measuring sleep quality (by using actigraphy and the OSA sleep inventory) and melatonin secretion at night.Methods
Thirty three male University students (mean ± SD age: 22 ± 3.1 years) completed the experiments lasting 5 days and 4 nights. The subjects were randomly divided into four groups: Poor*Dim (n = 10), meaning a tryptophan-poor breakfast (55 mg/meal) in the morning and dim light environment (<50 lx) during the daytime; Rich*Dim (n = 7), tryptophan-rich breakfast (476 mg/meal) and dim light environment; Poor*Bright (n = 9), tryptophan-poor breakfast and bright light environment (>5,000 lx); and Rich*Bright (n = 7), tryptophan-rich breakfast and bright light.Results
Saliva melatonin concentrations on the fourth day were significantly lower than on the first day in the Poor*Dim group, whereas they were higher on the fourth day in the Rich*Bright group. Creatinine-adjusted melatonin in urine showed the same direction as saliva melatonin concentrations. These results indicate that the combination of a tryptophan-rich breakfast and bright light exposure during the daytime could promote melatonin secretion at night; further, the observations that the Rich*Bright group had higher melatonin concentrations than the Rich*Dim group, despite no significant differences being observed between the Poor*Dim and Rich*Dim groups nor the Poor*Bright and Rich*Bright groups, suggest that bright light exposure in the daytime is an important contributor to raised melatonin levels in the evening.Conclusions
This study is the first to report the quantitative effects of changed tryptophan intake at breakfast combined with daytime light exposure on melatonin secretion and sleep quality. Evening saliva melatonin secretion changed significantly and indicated that a tryptophan-rich breakfast and bright light exposure during the daytime promoted melatonin secretion at this time. 相似文献3.
Amit Green Shlomi Barak Lior Shine Arik Kahane Yaron Dagan 《Chronobiology international》2020,37(3):414-424
ABSTRACTThe last several decades have been characterized by the widespread usage of digital devices, especially smartphones. At the same time, there have been reports of both decline in sleep duration and quality and male fertility decline. The aim of this study was to assess the relationship between evening exposure to the light-emitting screens of digital media devices and measures of both sleep and sperm quality. Semen samples were obtained from 116 men undergoing fertility evaluation for the following sperm variables: volume (mL), pH, sperm concentration (million/mL), motility percentage (progressive% + non-progressive motility%), and total sperm count. Exposure to the screens of electronic devices and sleep habits was obtained by means of a questionnaire. Smartphone and tablet usage in the evening and after bedtime was negatively correlated with sperm motility (?0.392; ?0.369; p < .05), sperm progressive motility (?0.322; ?0.299; p < .05), and sperm concentration (?0.169; p < .05), and positively correlated with the percentage of immotile sperm (0.382; 0.344; p < .05). In addition, sleep duration was positively correlated with sperm total and progressive motility (0.249; 0.233; p < .05) and negatively correlated with semen pH (?0.349; p < .05). A significant negative correlation was observed between subjective sleepiness and total and progressive motility (?0.264; p < .05) as well as total motile sperm number (?0.173; p < .05). The results of this study support a link between evening and post-bedtime exposure to light-emitting digital media screens and sperm quality. Further research is required to establish the proposed causative link and may lead to the future development of relevant therapeutic and lifestyle interventions. 相似文献
4.
Mari Kim Manivannan Subramanian Yun-Ho Cho Gye-Hyeong Kim Eunil Lee Joong-Jean Park 《Biochemical and biophysical research communications》2018,495(2):1722-1729
The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration. 相似文献
5.
《Chronobiology international》2013,30(3):368-375
The diurnal light cycle has a crucial influence on all life on earth. Unfortunately, modern society has modified this life-governing cycle by stressing maximum production and by giving insufficient attention to the ecological balance and homeostasis of the human metabolism. The aim of this study is to evaluate the effects of exposure or lack of exposure to natural light in a rest/activity rhythm on cortisol and melatonin levels, as well as on psychological variables in humans under natural conditions. This is a cross-sectional study. The subjects were allocated split into two groups according to their workspace (10 employees in the “with window” group and 10 in the “without window” group). All participants were women and wore anactigraph (Actiwatch 2, Philips Respironics), which measures activity and ambient light exposure, for seven days. Concentrations of melatonin and cortisol were measured from the saliva samples. Participants were instructed to collect saliva during the last day of use of the actigraph at 08:00 am, 4:00 pm and 10:00 pm. The subjects answered the Self-Reporting Questionnaire-20 (SRQ-20) to measure the presence of minor psychiatric disorders; the Montgomery-Asberg (MA) scale was used to measure depression symptoms, and the Pittsburgh Sleep Quality Index questionnaire (PSQI) was used to evaluate the quality of sleep. The Rayleigh analysis indicates that the two groups, “with window” an d “without window”, exhibited similar activities and light acrophases. In relation to light exposure, the mesor was significantly higher (t?=??2.651, p?=?0.023) in t he “with window” group (191.04?±?133.36) than in the “without window” group (73.8?±?42.05). Additionally, the “with window” group presented the highest amplitude of light exposure (298.07?±?222.97). Cortisol levels were significantly different between the groups at 10:00 pm (t?=?3.009, p?=?0.008; “without window” (4.01?±?0.91) “with window” (3.10?±?0.30)). In terms of the melatonin levels, the groups differed at two different times of day: 08:00 am (t?=?2.593, p?=?0.018) and 10:00 pm (t?=??2.939, p?=?0.009). The “with window” group had a lower melatonin level at 08:00 am (3.54?±?0.60) but a higher level at 10:00 pm (24.74?±?4.22) than the “without window” group. Higher cortisol levels were positively correlated with minor psychiatric disorders and depressive symptoms (MA) at 10:00 pm. Lower melatonin levels at 10:00 pm were correlated with depressive symptoms and poor quality of sleep (PSQI). Our study demonstrated that not only may light pollution affect human physiology but also lack of exposure to natural light is related to high levels of cortisol and lower levels of melatonin at night, and these, in turn, are related to depressive symptoms and poor quality of sleep. 相似文献
6.
Endothelial nitric oxide synthase knock out mice (eNOS-/-) are mildly hypertensive in comparison to wild-type (WT) mice. Hypertension in eNOS-/- mice is partly the result of an increase in peripheral resistance due to the absence of the vasodilatory action of NO. No data are available for these animals regarding the 24 h blood pressure profile under the 12:12 h light-dark cycle (LD) and constant dark (DD) conditions. Therefore, this study aimed to investigate by radiotelemetry the circadian rhythms in systolic blood pressure (SBP) and diastolic blood pressure (DBP) of six eNOS-/- mice and five wild-type mice under LD and DD. Data were collected beginning 3 wks after operation (implantation of sensor) for 2 wks under LD and for another 2 wks thereafter under DD. Our results show that eNOS-/- mice were hypertensive under all experimental conditions. SBP and DBP were significantly higher by about 15% in eNOS-/- mice. No differences were found in the pattern of the circadian rhythms, rhythmicity, or period lengths during LD or DD. The genetic deletion of eNOS seems to lead to higher SBP and DBP, but the circadian blood pressure pattern is still preserved with higher values during the night (active phase) and lower values during the daytime (rest phase). Thus, endothelial-derived NO plays an important role in the regulation of vascular tone and haemodynamics, but it is not important for the circadian organization of SBP and DBP. 相似文献