首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

2.
Understanding the mechanisms of secondary succession related to forest management practices is receiving increasing attention in community ecology and biodiversity conservation. Abiotic and biotic filtering are deterministic processes driving community reassembly. A functional trait or phylogeny-based approach predicts that environmental filtering induced by clearcut-logging results in functional/phylogenetic clustering in younger forests, while biotic filtering (competitive exclusion) promotes functional/phylogenetic overdispersion in old-growth forests. From this perspective, we examined the patterns of functional/phylogenetic structures using tree community data (147 species × 170 plots). These data were chronosequenced from clearcut secondary forests to old-growth subtropical forests in the Ryukyu Archipelago, with species’ trait data (leaf and stem) and species level phylogeny. To detect clustering or overdispersion in the functional and phylogenetic structures, we calculated the standardized effect size of mean nearest trait distance and mean nearest phylogenetic distance within the plots. Functional or phylogenetic clustering was relatively weak in secondary forests, and their directional change with increasing forest age was not generally detected. Mean nearest trait/phylogenetic distance for most plots fell within the range of random expectation. The results suggest that abiotic/biotic filtering related to functional traits or phylogenetic relatedness plays a diminished role in shaping species assembly during secondary succession in the subtropical forest. Our findings of functional and phylogenetic properties might shed light on the importance of dispersal (stochastic) processes in the regional species pool during community reassembly after anthropogenic disturbance. It will also contribute to the development of coordinated schemes that maintain potential species assembly processes in the subtropical forest.  相似文献   

3.
Aim The drivers of species assembly, by limiting the possible range of functional trait values, can lead to either convergent or divergent distributions of traits in realized assemblages. Here, to evaluate the strengths of these species assembly drivers, we partition trait variance across global, regional and community scales. We then test the hypothesis that, from global to community scales, the outcome of co‐occurring trait convergence and divergence is highly variable across biomes and communities. Location Global: nine biomes ranging from subarctic highland to tropical rain forest. Methods We analysed functional trait diversity at progressively finer spatial scales using a global, balanced, hierarchically structured dataset from 9 biomes, 58 communities and 652 species. Analyses were based on two key leaf traits (foliar nitrogen content and specific leaf area) that are known to drive biogeochemical cycling. Results While 35% of the global variance in these traits was between biomes, only 15% was between communities within biomes and as much as 50% occurred within communities. Despite this relatively high within‐community variance in trait values, we found that trait convergence dominated over divergence at both global and regional scales through comparisons of functional trait diversity in regional and community assemblages against random (null) models of species assembly. Main conclusions We demonstrate that the convergence of traits occurring from global to regional assemblages can be twice as strong as that from regional to community assemblages, and argue that large differences in the nature and strength of abiotic and biotic drivers of dominant species assembly can, at least partly, explain the variable outcome of simultaneous trait convergence and divergence across sites. Ultimately, these findings stress the urgent need to extend species assembly research to address those scales where trait variance is the highest, i.e. between biomes and within communities.  相似文献   

4.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   

5.
Two major theories of community assembly – based on the assumption of ‘limiting similarity’ or ‘habitat filtering’, respectively – predict contrasting patterns in the spatial arrangement of functional traits. Previous analyses have made progress in testing these predictions and identifying underlying processes, but have also pointed to theoretical as well as methodological shortcomings. Here we applied a recently developed methodology for spatially explicit analysis of phylogenetic meta‐community structure to study the pattern of co‐occurrence of functional traits in Afrotropical and Neotropical bird species inhabiting forest fragments. Focusing separately on locomotory, dietary, and dispersal traits, we tested whether environmental filtering causes spatial clustering, or competition leads to spatial segregation as predicted by limiting similarity theory. We detected significant segregation of species co‐occurrences in African fragments, but not in the Neotropical ones. Interspecific competition had a higher impact on trait co‐occurrence than filter effects, yet no single functional trait was able to explain the observed degree of spatial segregation among species. Despite high regional variability spanning from spatial segregation to aggregation, we found a consistent tendency for a clustered spatial patterning of functional traits among communities in fragmented landscapes, particularly in non‐territorial species. Overall, we show that behavioural effects, such as territoriality, and environmental effects, such as the area of forest remnants or properties of the landscape matrix in which they are embedded, can strongly affect the pattern of trait co‐occurrence. Our findings suggest that trait‐based analyses of community structure should include behavioural and environmental covariates, and we here provide an appropriate method for linking functional traits, species ecology and environmental conditions to clarify the drivers underlying spatial patterns of species co‐occurrence.  相似文献   

6.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

7.
贾鹏  杜国祯 《生命科学》2014,(2):153-157
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。  相似文献   

8.
Chronic anthropogenic disturbances (CAD) and rainfall are important drivers of plant community assembly, but little is known about the role played by inter‐ and intraspecific trait variation as communities respond to these pervasive forces. Here, we examined the hypothesis that lower precipitation and higher CAD reduce both intra‐ and interspecific trait variation in Caatinga dry forests. We sampled woody plants across 15 plots along precipitation and CAD gradients and measured resource‐use traits. The effects of precipitation and CAD on RaoQ functional diversity were decomposed into species turnover and intraspecific variability. We used “T‐statistics” to assess the trait sorting from the regional pool to local communities (i.e., external filtering), and within‐community forces leading to low trait overlap (i.e., internal filtering) at individual and species levels. Intraspecific variability explained at least one‐third of the total trait variation and 46% of variation in multitrait diversity across communities. Increasing disturbance reduced multitrait diversity, while precipitation affected some particular traits, such as wood density. Overall, precipitation determined species sorting across communities, while disturbance relaxed internal filters, leading to higher trait overlap within communities due to higher intraspecific variability. Our results suggest that the woody Caatinga flora contains a substantial amount of both inter‐ and intraspecific trait variation. This variation is not randomly distributed within and across communities, but varies according to rainfall conditions and disturbance intensity. These findings reinforce the emerging idea that human disturbances can reorganize plant communities at multiple scales and highlight trait variability as a key biological asset for the resilience of dry forests.  相似文献   

9.
植物群落构建机制研究进展   总被引:25,自引:15,他引:10  
柴永福  岳明 《生态学报》2016,36(15):4557-4572
群落构建研究对于解释物种共存和物种多样性的维持是至关重要的,因此一直是生态学研究的中心论题。尽管近年来关于生态位和中性理论的验证研究已经取得了显著的成果,但对于局域群落构建机制的认识仍存在很大争议。随着统计和理论上的进步使得用功能性状和群落谱系结构解释群落构建机制变为可能,主要是通过验证共存物种的性状和谱系距离分布模式来实现。然而,谱系和功能性状不能相互替代,多种生物和非生物因子同时控制着群落构建,基于中性理论的扩散限制、基于生态位的环境过滤和竞争排斥等多个过程可能同时影响着群落的构建。所以,综合考虑多种方法和影响因素探讨植物群落的构建机制,对于预测和解释植被对干扰的响应,理解生物多样性维持机制有重要意义。试图在简要回顾群落构建理论及研究方法发展的基础上,梳理其最新研究进展,并探讨整合功能性状及群落谱系结构的研究方法,解释群落构建和物种多样性维持机制的可能途径。在结合功能性状和谱系结构研究群落构建时,除了考虑空间尺度、环境因子、植被类型外,还应该关注时间尺度、选择性状的种类和数量、性状的种内变异、以及人为干扰等因素对群落构建的影响。  相似文献   

10.

Questions

A robust ecosystem requires a functionally heterogeneous community of organisms with ecological traits that permit broad resource partitioning. Understanding community diversity patterns can help investigate drivers of community assembly and assess restoration success. Do biodiversity patterns differ among grassland communities sown with different ecotypes of dominant species during restoration along a rainfall gradient in the tallgrass prairie of the central US Great Plains?

Location

Four field sites across a rainfall gradient within the North American Great Plains: Colby, Kansas (39°23′17.8″N, 101°04′57.4″W), Hays, Kansas (38°51′13.2″N, 99°19′08.6″W), Manhattan, Kansas (39°08′22.3″N, 96°38′23.3″W), and Carbondale, Illinois (IL, 37°41′47.0″N, 89°14′19.2″W).

Methods

We applied linear mixed models to assess the effect of dominant species ecotype, year, and location on grassland taxonomic, phylogenetic, and functional diversity.

Results

The non-local grass ecotype (compared to the local ecotype) promoted species richness. In contrast, the effect of the dominant species ecotype on phylogenetic or functional diversity was site-specific over the 10-year restoration. Richness decreased across the rainfall gradient from dry to moist sites, and the wettest site had the highest phylogenetic and functional diversity.

Conclusions

Our results suggest that abiotic filtering by rainfall is a key assembly mechanism that could predict grassland changes in biodiversity in the early restoration phases. Given the community response across the tallgrass prairie, restoration practitioners should consider the impact of regional sources of dominant species used in restoration when biodiversity is a restoration goal. It is recommended for future grassland restoration to detect gaps and limitations in evolutionary and trait structure that will reveal which diversity components to evaluate.  相似文献   

11.
Identifying patterns and drivers of plant community assembly has long been a central issue in ecology. Many studies have explored the above questions using a trait‐based approach; however, there are still unknowns around how patterns of plant functional traits vary with environmental gradients. In this study, the responses of individual and multivariate trait dispersions of 134 species to soil resource availability were examined based on correlational analysis and torus‐translation tests across four spatial scales in a subtropical forest, China. Results indicated that different degrees of soil resource availability had different effects on trait dispersions. Specifically, limited resource (available phosphorus) showed negative relationships with trait dispersions, non‐limited resource (available potassium) showed positive relationships with trait dispersions, and saturated resource (available nitrogen) had no effect on trait dispersions. Moreover, compared with the stem (wood density) and architectural trait (maximum height), we found that leaf functional traits can well reflect the response of plants to nutrient gradients. Lastly, the spatial scale only affected the magnitude but not the direction of the correlations between trait dispersions and environmental gradients. Overall, the results highlight the importance of soil resource availability and spatial scale in understanding how plant functional traits respond to environmental gradients.  相似文献   

12.
Functional traits impact species interactions, community composition, and ecosystem functioning. However, few studies have focused on the diversification and phylogenetic correlation of multiple functional traits over geological time. We conducted phylogenetic comparative analysis for boreal forest understory species in northeast China to examine the diversification and phylogenetic correlation in several functional traits: leaf area (LA), leaf carbon content (LCC), leaf dry matter content (LDMC), leaf nitrogen content (LNC), plant height (PH), and specific leaf area (SLA). Phylogenetic signals showed that there were very low levels of phylogenetic niche conservatism (PNC) in understory leaf-related traits and plant height, suggesting divergence of functional traits for the co-occurring understory species. The disparity through time analyses (DTT) indicated that trait disparities mainly originated during recent divergence events and there were no differences in the observed trait disparities compared with that expected under Brownian motion. Furthermore, we found both positive and negative phylogenetic correlations among the measured functional traits. The very low levels of PNC suggest that these functional traits diverged among co-occurring understory species, and that those species are distantly phylogenetically related. The phylogenetic correlations among traits may be caused by both positively and negatively correlated adaptions that correspond to resource acquisition strategies. This study provides evidence that divergence in functional traits may reflect understory adaptions to boreal conditions.  相似文献   

13.
近年来, 功能多样性和谱系多样性为探究群落构建机制提供了新方法。为了更准确地了解海南岛高海拔热带云雾林群落构建机制, 该研究以海南岛霸王岭热带云雾林为对象, 测定7个环境因子和13个植物功能性状。利用主成分分析(PCA)筛选环境因子, 以霸王岭、尖峰岭和黎母山热带云雾林分布物种建立区域物种库, 结合模型, 分析Rao二次熵(RaoQ)和平均成对谱系距离(MPD)变化对植物群落构建的影响。结果表明: 林冠开阔度、土壤全磷含量和坡度是影响植物群落构建的关键环境因子。多数功能性状的系统发育信号很低且不显著, 说明热带云雾林群落的系统发育关系与功能性状随历史进程变化不一致。RaoQMPD的实际观测值都显著低于期望值, 且其标准效应值与土壤磷含量显著相关, 说明生境过滤是驱动热带云雾林群落构建的关键因子, 土壤磷含量是群落构建的关键环境筛。  相似文献   

14.
Aims It is known that taxonomic diversity can be predicted by the spatial configuration of the habitat, in particular by its area and degree of isolation. However, taxonomic diversity is a poor predictor of ecosystem functioning. While functional diversity is strongly linked to the functionality and stability of ecosystems, little is known about how changes in the spatial configuration of the habitat affect functional diversity. In this study, we evaluated whether the spatial configuration of forest patches predicts the functional diversity of plants in a fragmented forest.Methods Five functional leaf traits (leaf dry matter content, leaf punch force, specific leaf area, leaf size and leaf thickness) were measured for 23 dominant plant species in 20 forest patches in a naturally fragmented forest on the Yucatan Peninsula. Abundance-weighted multivariate and individual trait metrics of functional diversity were calculated and correlated with size, degree of isolation and the shape of forest patches.Important findings Patch shape was negatively correlated with multivariate and individual trait (leaf dry matter content and leaf size) metrics of functional diversity. Patch isolation measures were also negatively correlated with individual trait (leaf dry matter content, leaf punch force and leaf size) metrics of functional diversity. In other words, greater patch shape irregularity and isolation degree impoverish plant functional variability. This is the first report of the negative effects of patch shape irregularity and isolation on the functional diversity of plant communities in a forest that has been fragmented for a long time.  相似文献   

15.
Aims Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps.Methods Using the quadratic diversity measure based on six functional traits—specific leaf area, leaf dry matter content, plant height, leaf carbon content, leaf nitrogen content and leaf carbon to nitrogen content alongside a species-resolved phylogenetic tree—we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps.Important findings Our study highlights two main points. First, climate and land-use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land-use factors in plant functional and phylogenetic community turnover and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.  相似文献   

16.
Understanding the factors driving assembling structure of ecological communities remains a fundamental problem in ecology, especially when focusing on ecological and evolutionary relatedness among species rather than on their taxonomic identity. It remains critical though to separate the patterns and drivers of phylogenetic and functional structures, because traits are phylogenetically constrained, but phylogeny alone does not fully reflect trait variability among species. Using birds from the Brazilian dry forest as a study case, we employed two different approaches to decompose functional structure into its components that are shared and non‐shared with the phylogenetic structure. We investigated the spatial pattern and environmental hypotheses for these phylogenetically constrained and unconstrained aspects of functional structure, including climate‐induced physiological constraints, historical climatic stability, resource availability and habitat partitioning. We found only partial congruence between the two methods of structure decomposition. Still, we found a differential effect of factors on specific components of functional structure of bird assemblages. While climate affects phylogenetically constrained traits through endurance, habitat partitioning (especially forest cover) affects the functional structure that is independent of phylogeny. With this strategy, we were able to decompose the patterns and drivers of the functional structure of birds along a semiarid gradient and showed that the decomposition of the functional structure into its phylogenetic and non‐phylogenetic counterparts can offer a more complete portrait of the assembling rules in ecological communities. We claim for a further development and use of this sort of strategy to investigate assembling rules in ecological communities.  相似文献   

17.
Coral reefs are the most biodiverse marine ecosystem and one of the most threatened by global climate change impacts. The vast majority of diversity on reefs is comprised of small invertebrates that live within the reef structure, termed the cryptofauna. This component of biodiversity is hugely understudied, and many species remain undescribed. This study represents a rare analysis of assembly processes structuring a distinct group of cryptofauna, the Palaemonidae, in the Chagos Archipelago, a reef ecosystem under minimal direct human impacts in the central Indian Ocean. The Palaemonidae are a diverse group of Caridae (infraorder of shrimps) that inhabit many different niches on coral reefs and are of particular interest because of their varied habitat associations. Phylogenetic and trait diversity and phylogenetic signal were used to infer likely drivers of community structure. The mechanisms driving palaemonid community assembly and maintenance in the Chagos Archipelago showed distinct spatial patterns. At local scales, among coral colonies and among reefs fringing individual atolls, significant trait, and phylogenetic clustering patterns suggest environmental filtering may be a dominant ecological process driving Palaemonidae community structure, although local competition through equalizing mechanisms may also play a role in shaping the local community structure. Importantly, we also tested the robustness of phylogenetic diversity to changes in evolutionary information as multi‐gene phylogenies are resource intensive and for large families, such as the Palaemonidae, are often incomplete. These tests demonstrated a very modest impact on phylogenetic community structure, with only one of the four genes (PEPCK gene) in the phylogeny affecting phylogenetic diversity patterns, which provides useful information for future studies on large families with incomplete phylogenies. These findings contribute to our limited knowledge of this component of biodiversity in a marine locality as close to undisturbed by humans as can be found. It also provides a rare evaluation of phylogenetic diversity methods.  相似文献   

18.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

19.
Field studies of community assembly patterns increasingly use phylogenetic relatedness as a surrogate for traits. Recent experiments appear to validate this approach by showing effects of correlated trait and phylogenetic distances on coexistence. However, traits governing resource use in animals are often labile. To test whether feeding trait or phylogenetic diversity can predict competition and production in communities of grazing amphipods, we manipulated both types of diversity independently in mesocosms. We found that increasing the feeding trait diversity of the community increased the number of species coexisting, reduced dominance and changed food availability. In contrast, phylogenetic diversity had no effect, suggesting that whatever additional ecological information it represents was not relevant in this context. Although community phylogenetic structure in the field may result from multiple traits with potential for phylogenetic signal, phylogenetic effects on species interactions in controlled experiments may depend on the lability of fewer key traits.  相似文献   

20.
Aims The positive relationship between plant biodiversity and community productivity is well established. However, our knowledge about the mechanisms underlying these positive biodiversity effects is still limited. One of the main hypotheses is that complementarity in resource uptake is responsible for the positive biodiversity effects: plant species differ in resource uptake strategy, which results in a more complete exploitation of the available resources in space and time when plant species are growing together. Recent studies suggest that functional diversity of the community, i.e. the diversity in functional characteristics ('traits') among species, rather than species richness per se, is important for positive biodiversity effects. However, experimental evidence for specific trait combinations underlying resource complementarity is scarce. As the root system is responsible for the uptake of nutrients and water, we hypothesize that diversity in root traits may underlie complementary resource use and contribute to the biodiversity effects.Methods In a common garden experiment, 16 grassland species were grown in monoculture, 4-species mixtures differing in root trait diversity and 16-species mixtures. The 4-species mixtures were designed to cover a gradient in average rooting depth. Above-ground biomass was cut after one growing season and used as a proxy for plant productivity to calculate biodiversity effects.Important findings Overall, plant mixtures showed a significant increase in biomass and complementarity effects, but this varied greatly between communities. However, diversity in root traits (measured in a separate greenhouse experiment and based on literature) could not explain this variation in complementarity effects. Instead, complementarity effects were strongly affected by the presence and competitive interactions of two particular species. The large variation in complementarity effects and significant effect of two species emphasizes the importance of community composition for positive biodiversity effects. Future research should focus on identifying the traits associated with the key role of particular species for complementarity effects. This may increase our understanding of the links between functional trait composition and biodiversity effects as well as the relative importance of resource complementarity and other underlying mechanisms for the positive biodiversity effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号