共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract: The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 m M dipalmitin and [γ-32 P]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was ∼1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 m M AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 µ M ). The stimulation was proportional to the concentration of AA up to 250 µ M . AA was the most potent stimulator of DG kinase, and linolenic acid showed ∼40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 µ M . It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity. 相似文献
3.
Liver regeneration is a well-orchestrated process that is triggered by tissue loss due to trauma or surgical resection and by hepatocellular death induced by toxins or viral infections. Due to the central role of the liver for body homeostasis, intensive research was conducted to identify factors that might contribute to hepatic growth and regeneration. Using a model of partial hepatectomy several factors including cytokines and growth factors that regulate this process were discovered. Among them, a protein was identified to specifically support liver regeneration and therefore was named ALR (Augmenter of Liver Regeneration). ALR protein is encoded by GFER (growth factor erv1-like) gene and can be regulated by various stimuli. ALR is expressed in different tissues in three isoforms which are associated with multiple functions: The long forms of ALR were found in the inner-mitochondrial space (IMS) and the cytosol. Mitochondrial ALR (23 kDa) was shown to cooperate with Mia40 to insure adequate protein folding during import into IMS. On the other hand short form ALR, located mainly in the cytosol, was attributed with anti-apoptotic and anti-oxidative properties as well as its inflammation and metabolism modulating effects. Although a considerable amount of work has been devoted to summarizing the knowledge on ALR, an investigation of ALR expression in different organs (location, subcellular localization) as well as delineation between the isoforms and function of ALR is still missing. This review provides a comprehensive evaluation of ALR structure and expression of different ALR isoforms. Furthermore, we highlight the functional role of endogenously expressed and exogenously applied ALR, as well as an analysis of the clinical importance of ALR, with emphasis on liver disease and in vivo models, as well as the consequences of mutations in the GFER gene. 相似文献
4.
Little effort has been made to apply the insights gained from studies of amphibian limb regeneration to higher vertebrates. During amphibian limb regeneration, a functional epithelium called the apical ectodermal cap (AEC) triggers a regenerative response. As long as the AEC is induced, limb regeneration will take place. Interestingly, similar responses have been observed in chicken embryos. The AEC is an equivalent structure to the apical ectodermal ridge (AER) in higher vertebrates. When a limb bud is amputated it does not regenerate; however, if the AER is grafted onto the amputation surface, damage to the amputated limb bud can be repaired. Thus, the AER/AEC is able to induce regenerative responses in both amphibians and higher vertebrates. It is difficult, however, to induce limb regeneration in higher vertebrates. One reason for this is that re-induction of the AER after amputation in higher vertebrates is challenging. Here, we evaluated whether AER re-induction was possible in higher vertebrates. First, we assessed the sequence of events following limb amputation in chick embryos and compared the features of limb development and regeneration in amphibians and chicks. Based on our findings, we attempted to re-induce the AER. When wnt-2b/fgf-10-expressing cells were inserted concurrently with wounding, successful re-induction of the AER occurred. These results open up new possibilities for limb regeneration in higher vertebrates since AER re-induction, which is considered a key factor in limb regeneration, is now possible. 相似文献
5.
6.
The contribution of chicken embryology to the understanding of vertebrate limb development 总被引:6,自引:0,他引:6
Tickle C 《Mechanisms of development》2004,121(9):1019-1029
The chicken is an excellent model organism for studying vertebrate limb development, mainly because of the ease of manipulating the developing limb in vivo. Classical chicken embryology has provided fate maps and elucidated the cell-cell interactions that specify limb pattern. The first defined chemical that can mimic one of these interactions was discovered by experiments on developing chick limbs and, over the last 15 years or so, the role of an increasing number of developmentally important genes has been uncovered. The principles that underlie limb development in chickens are applicable to other vertebrates and there are growing links with clinical genetics. The sequence of the chicken genome, together with other recently assembled chicken genomic resources, will present new opportunities for exploiting the ease of manipulating the limb. 相似文献
7.
8.
Lee Niswander Gail Martin Cheryll Tickle Astrid Vogel 《Molecular reproduction and development》1994,39(1):83-89
The apical ectodermal ridge plays a central role in limb development through its interactions with the underlying mesenchyme. Removal of the AER results in cessation of limb outgrowth and leads to truncation of the limb along the proximo-distal axis. The many functions attributed to the ridge include maintenance of the progress zone mesenchyme. Here, cells are stimulated to proliferate, are maintained in an undifferentiated state, and are assigned progressively more distal positional values as the limb grows. The AER also functions to maintain the activity of the polarizing region, a region of mesenchyme which is thought to provide the primary signal for patterning along the antero-posterior axis. We have begun to explore the function of fibroblast growth factor-4 (FGF-4) during limb development. FGF-4, which encodes an efficiently secreted protein, is expressed in the AER. We have previously demonstrated that FGF-4 protein can stimulate limb mesenchyme proliferation and can induce the expression of a downstream homeobox gene, Evx-1 (homologue of the Drosophila even-skipped gene), that is normally regulated by a signal from the AER. To determine to what extent FGF-4 protein can substitute for the AER to allow normal limb outgrowth, we performed experiments on the developing chick limb in ovo. Remarkably, we find that after AER removal, the FGF-4 protein can provide all the signals required for virtually normal outgrowth and patterning of the limb. Further studies indicate that proliferation of progress zone cells is not sufficient, and that an additional signal is produced by the posterior mesenchyme in response to FGF-4 which enables progress zone cells to acquire progressively more distal fates. Thus FGF-4 maintains progress zone activity through a combination of at least two signals—one that acts directly on progress zone cells to stimulate their proliferation, and one that acts indirectly by maintaining the production of patterning signal(s) by the posterior mesenchyme. We further show that failure of the posterior mesenchyme to produce this signal correlates with failure to maintain polarizing activity. This raises the possibility that the signal produced by the posterior mesenchyme and required for progressive proximo-distal limb patterning is identical to the polarizing activity. Further experiments demonstrate that retinoic acid, which mimics the activity of the polarizing region, can supply this signal. In conclusion, the finding that a single growth factor can serve as both the direct and indirect signals required to maintain progress zone activity provides a simple mechanism for ensuring that growth and pattern formation are linked in the developing limb. © 1994 Wiley-Liss, Inc. 相似文献
9.
Suzuki T Mizuta C Uda K Ishida K Mizuta K Sona S Compaan DM Ellington WR 《Journal of molecular evolution》2004,59(2):218-226
Creatine kinase (CK) plays a central role in energy homeostasis in cells that display high and variable rates of energy turnover. A number of CK genes exist, each being targeted to particular intracellular compartments. In the vertebrates, two genes code for proteins which form homo- and heterodimers targeted to the cytoplasm, while two additional genes code for primarily octameric proteins targeted to the mitochondrial intermembrane space. Yet another gene is present in certain groups which codes for three fused, complete CK domains and is typically targeted to the flagellar membrane of primitive-type spermatozoa. CK is widely distributed in protochordates and both protostome and deuterostome invertebrate groups. The evolutionary relationships of these CK genes have not been fully elucidated. The present communication reports new cDNA-derived deduced amino acid sequences for four cytoplasmic and three mitochondrial CKs and one flagellar CK from lophotrochozoan, protostome invertebrates as well as a new cytoplasmic CK sequence from a protochordate tunicate. These new sequences, coupled with available sequences in the databases and sequences extracted from genome sequencing projects, provide revealing insights into the evolution and divergence of CK genes. Phylogenetic analyses showed that single cytoplasmic, mitochondrial, and flagellar CK genes were present prior to the divergence of the protostomes and deuterostomes. The flagellar CK gene may have evolved within the cytoplasmic gene clade, although the evidence is somewhat equivocal. The two cytoplasmic genes in the vertebrates, and most likely the two mitochondrial genes, evolved after the divergence of the craniates from the protochordates. Comparison of the structure of the genes for selected cytoplasmic, mitochondrial, and flagellar CKs revealed two identical intron boundaries, further reinforcing the notion of a common evolutionary origin, but also showed patterns of changes in structure consistent with each gene type. These studies show that the cytoplasmic, mitochondrial, and flagellar CK genes are rather ancient and that there has been a systematic pattern of duplication and divergence consistent with changing nature of energy demands and physicochemical environment in the cells where they are expressed.[Reviewing Editor: Martin Kreitman] 相似文献
10.
11.
《Gene expression patterns : GEP》2014,14(2):55-61
The Wnt genes encode secreted glycoprotein ligands that are key players during animal development. Previous studies revealed the presence of 12 classes of Wnt genes in protostomes, although lineage specific losses of Wnt genes are common. So far, the gene expression profile of only two complete sets of arthropod Wnt genes has been studied; these are the Wnt genes of the fly Drosophila melanogaster and the beetle Tribolium castaneum. Insects, however, do not represent good models for the understanding of Wnt gene evolution because several Wnt genes have been lost in the lineage leading to the insects, or within the different orders of insects. Comparative gene expression data from non-insect arthropods are rare and restricted to a subset of Wnt genes.This study aims to fill this gap and describes four newly detected Wnt genes from the millipede Glomeris marginata (Myriapoda: Diplopoda). Together with previous studies, now 11 Glomeris Wnt genes have been isolated and their expression has been studied. The only predicted but hitherto undetected Wnt gene is Wnt10. The new data provide a platform for the comparison of Wnt gene expression patterns in arthropods and reveal conserved as well as diverged aspects of Wnt gene expression in Arthropoda. Prominent expression of Wnt4 in dorsal tissue implies a role in dorsal segmentation and suggests that Wnt4 may be the predicted substitute for the previously reported missing expression of wg/Wnt1 in dorsal tissue. 相似文献
12.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding
the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained
through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb
bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays
a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the
affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of
gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing
limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing
activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development.
Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant.
Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail
to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is
defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger
mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development.
Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts.
This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required
for normal muscle limb patterning.
Received: 31 August 1998 / Accepted: 29 September 1998 相似文献
13.
Summary Two retinoids, all-trans-retinoic acid and a synthetic analog, TTNPB, were locally applied to different positions along the proximo-distal axis of embryonic chick wing buds using controlled release carriers. Truncations or limbs with duplicated structures across the antero-posterior axis develop after retinoid application to distal positions in buds from stage 20–24 embryos. Phocomelic limbs develop when the retinoids are applied more proximally to buds of stage 23–24 embryos. Duplications of the pattern of structures along the proximo-distal axis never occur.Using TTNPB that is relatively stable, the amount of retinoid in the wing tissue when phocomelia is induced was measured. There is twice as much retinoid per cell in the proximal half of the bud as in the distal half of the bud. The concentration of TTNPB in proximal tissue is estimated to be three times higher than in distal tissue in which pattern formation and cartilage morphogenesis are relatively normal.At early stages in the development of phocomelia, the shape of the bud changes and the indentation that marks the elbow does not arise. Neither retinoid-induced cell killing nor effects on the pattern of programmed cell death were detected.The induction of phocomelia by retinoids appears to be based on effects on proximal cells, whereas retinoids produce pattern changes by acting on distal cells. Furthermore, compared with pattern changes, higher concentrations of retinoid in the bud tissue are required to produce phocomelia. 相似文献
14.
15.
16.
17.
The tetrapod limb, which has served as a paradigm for the study of development and morphological evolution, is becoming a paradigm for developmental evolution as well. In its origin and diversification, the tetrapod limb has undergone a great deal of remodeling. These morphological changes and other evolutionary phenomena have produced variation in mechanisms of tetrapod limb development. Here, we review that variation in the four major clades of limbed tetrapods. Comparisons in a phylogenetic context reveal details of development and evolution that otherwise may have been unclear. Such details include apparent differences in the mechanisms of dorsal-ventral patterning and limb identity specification between mouse and chick and mechanistic novelties in amniotes, anurans, and urodeles. As we gain a better understanding of the details of limb development, further differences among taxa will be revealed. The use of appropriate comparative techniques in a phylogenetic context thus sheds light on evolutionary transitions in limb morphology and the generality of developmental models across species and is therefore important to both evolutionary and developmental biologists. 相似文献
18.
Dušica Ivanković Jasenka Pavičić Sonja Kozar Biserka Raspor 《Helgoland Marine Research》2002,56(2):95-101
Polymorphism of metallothioneins in the digestive gland of naturally occurring (control) and experimentally Cd-exposed mussels Mytilus galloprovincialis (200 μg Cd l–1; 14 days) was studied by applying the conventional methods of Sephadex column liquid chromatography (G-75 and DEAE A-25), and by an electrochemical method (DPASV) for determination of Cd, Zn and Cu concentrations in chromatographic fractions. In both control and Cd-exposed mussels, two distinct molecular mass components of the metallothioneins, monomeric (MT-10) and dimeric (MT-20), were resolved by Sephadex G-75 gel filtration chromatography. In control mussels, the MT-10 component was predominantly expressed as containing markedly higher constitutive levels of Zn (100×) and Cu (10×) than of Cd. Each of these two molecular mass components was further resolved into seven metal-rich peaks by anion-exchange chromatography. In Cd-exposed mussels the larger proportion of Cd was bound to the MT-20 than to the MT-10 component, suggesting that the dimeric component may be considered as a primarily inducible metallothionein. The elution positions of metal-binding maxima of Cd-exposed and control mussels on the respective DEAE chromatographic profiles were comparable. A great similarity in elution positions of Cd maxima between the composite and single-specimen samples was also observed. Our study confirms a high multiplicity of MT forms in mussels from the Mytilus genus not only under the laboratory high-level metal exposure conditions, but also at a natural seawater metal exposure level. The ecotoxicological significance of dimeric and monomeric MT forms, as well as their possible application in the biomonitoring of seawater for trace metals, has been considered. Electronic Publication 相似文献
19.
20.
Arthropods are the most diverse and speciose group of organisms on earth. A key feature in their successful radiation is the ease with which various appendages become readily adapted to new functions in novel environments. Arthropod limbs differ radically in form and function, from unbranched walking legs to multibranched swimming paddles. To uncover the developmental and genetic mechanisms underlying this diversification in form, we ask whether a three-signal model of limb growth based on Drosophila experiments is used in the development of arthropod limbs with variant shape. We cloned a Wnt-1 ortholog (Tlwnt-1) from Triops longicaudatus, a basal crustacean with a multibranched limb. We examined the mRNA in situ hybridization pattern during larval development to determine whether changes in wg expression are correlated with innovation in limb form. During larval growth and segmentation Tlwnt-1 is expressed in a segmentally reiterated pattern in the trunk. Unexpectedly, this pattern is restricted to the ventral portion of the epidermis. During early limb formation the single continuous stripe of Tlwnt-1 expression in each segment becomes ventrolaterally restricted into a series of shorter stripes. Some but not all of these shorter stripes correspond to what becomes the ventral side of a developing limb branch. We conclude that the Drosophila model of limb development cannot explain all types of arthropod proximodistal outgrowths, and that the multibranched limb of Triops develops from an early reorganization of the ventral body wall. In Triops, Tlwnt-1 plays a semiconservative role similar to that played by Drosophila wingless in segmentation and limb formation, and morphological innovation in limb form arises in part through an early modulation in the expression of the Tlwnt-1 gene. Received: 22 September 1998 / Accepted: 12 January 1999 相似文献