首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Halting biological invasions and rewilding extirpated native fauna are conservation interventions to bolster biodiversity, species interactions, and ecosystems. These actions are often considered separately and the potential for reintroduced wildlife to facilitate invasive plants has been largely overlooked. Here, we investigated the role of Singapore's recolonizing native wild pigs (Sus scrofa) in facilitating an invasive weed Miconia crenata into tropical rainforests, which are normally highly resistant to invasion. We conducted line-transect surveys in 11 Singaporean rain forests and used generalized linear mixed models to consider the contribution of pigs' soil disturbances, human forest paths, and other environmental covariates, on the density of M. crenata. We found that M. crenata was more abundant at forest edges and invasion into forest interior was facilitated by pigs, paths, and canopy gaps, but that these effects were all additive, not synergistic (i.e., not multiplicative). These results highlight how modern invasions are driven by multiple disturbances as well as propagule pressure (e.g., urban birds dispersing seeds at forest edges where they establish in pig soil disturbances). Singapore's extensive native forest restoration efforts may have provided plentiful edge and secondary forests that are well suited to pigs and M. crenata, which in turn undermine the aims of fostering later-successional native plant communities. To prevent negative externalities, we suggest that plant restoration and rewilding projects consider the potential role of wildlife in facilitating non-native plants, and couple these actions with preliminary screening of unintended consequences and continued monitoring, as well as limiting human-mediated weed invasion to minimize propagule sources.  相似文献   

2.
Abstract Aim In general, the plant communities of oceanic islands suffer more from exotic plant invasions than their continental equivalents. At least part of this difference may be contributed by differences in non‐biological factors, such as the antiquity and intensity of human impacts and the absence of internal barriers to dispersal, rather than differences in inherent invasibility. We tested the resistance of species‐rich continental rain forests to plant invasion on a small, continental island that has been subject to prolonged and intensive human impact. Location Singapore is a 683‐km2 equatorial island <1 km from the Asian mainland and with a population of 4 million people. It has a continental biota but has been subject to human impacts as intense as on any oceanic island. Methods We sampled twenty‐nine sites in seven vegetation types, ranging from urban wasteland to fragments of primary lowland rain forest. In each sample plot, all plant species were identified, exotic cover was estimated, and a range of environmental variables measured. Additional qualitative surveys for exotic invasion were made in other forest areas in Singapore. The data were analysed by Spearman's rank correlation coefficient. Results The number of exotic species recorded at a site was unrelated to the number of native species. Across all sites, percentage canopy opening had the highest correlation with the number of exotic species, while soil pH (which largely reflects the incorporation of calcareous construction wastes) had the highest correlation if the mangrove sites were excluded. There were no exotics in mangrove forest and only a tropical American, bird‐dispersed shrub, Clidemia hirta (L.) D. Don (Melastomataceae: Koster's Curse), in primary and tall secondary forest patches. The species‐poor early stages of woody plant succession on highly degraded soils were also very resistant to exotic plant invasion. Main conclusions Long‐isolated rain forest fragments in an exotic‐dominated continental island landscape resist invasion by exotic plants, suggesting that the problems on oceanic islands may reflect an inherently greater invasibility. This study also adds to the increasing evidence that the floras of tropical rain forest fragments in South‐east Asia are remarkably resilient on a time‐scale of decades to a century or more.  相似文献   

3.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

4.
In Mauritius, many of the worst invasive plant species have fleshy fruits and rely on animals for dispersal. The introduced red‐whiskered bulbul (Pycnonotus jocosus) feeds on many fleshy‐fruited species, and often moves from invaded and degraded habitats into higher quality native forests, thus potentially acting as a mediator of continued plant invasion into these areas. Furthermore, gut passage may influence seed germination. To investigate this, we fed fleshy fruits of two invasive plant species, Ligustrum robustum and Clidemia hirta, to red‐whiskered bulbuls. Gut passage times of seeds were recorded. Gut‐passed seeds were sown and their germination rate and germination success compared with that of hand‐cleaned seeds, as well as that of seeds in whole fruits. Gut passage and hand‐cleaning had significant positive effects on germination of both species. Gut‐passed seeds of both C. hirta and L. robustum germinated faster than hand‐cleaned seeds. However, for L. robustum, this was only true when compared with hand‐cleaned seeds with intact endocarp; when compared with hand‐cleaned seeds without endocarp, there was no difference. For overall germination success, there was a positive effect of gut passage for C. hirta, but not for L. robustum. For both C. hirta and L. robustum, no seeds in intact fruits geminated, suggesting that removal of pulp is essential for germination. Our results suggest that, first, the initial invasion of native forests in Mauritius may not have happened so rapidly without efficient avian seed dispersers like the red‐whiskered bulbul. Second, the bulbul is likely to be a major factor in the continued re‐invasion of C. hirta and L. robustum into weeded and restored conservation management areas.  相似文献   

5.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

6.
Aims Inferring environmental conditions from characteristic patterns of plant co-occurrences can be crucial for the development of conservation strategies concerning secondary neotropical forests. However, no methodological agreement has been achieved so far regarding the identification and classification of characteristic groups of vascular plant species in the tropics. This study examines botanical and, in particular, statistical aspects to be considered in such analyses. Based on these, we propose a novel data-driven approach for the identification of characteristic plant co-occurrences in neotropical secondary mountain forests.Methods Floristic inventory data were gathered in secondary tropical mountain forests in Ecuador. Vegetation classification was performed by coupling locally adaptive isometric feature mapping, a non-linear ordination method and fuzzy- c -means clustering. This approach was designed for dealing with underlying non-linearities and uncertainties in the inventory data.Important findings The results indicate that the applied non-linear mapping in combination with fuzzy classification of species occurrence allows an effective identification of characteristic groups of co-occurring species as fuzzy-defined clusters. The selected species indicated groups representing characteristic life-form distributions, as they correspond to various stages of forest regeneration. Combining the identified 'characteristic species groups' with meta-information derived from accompanying studies indicated that the clusters can also be related to habitat conditions. In conclusion, we identified species groups either characteristic of different stages of forest succession after clear-cutting or of impact by fire or a landslide. We expect that the proposed data-mining method will be useful for vegetation classification where no a priori knowledge is available.  相似文献   

7.
Distributions of exotic plants in eastern Asia and North America   总被引:3,自引:0,他引:3  
Guo Q  Qian H  Ricklefs RE  Xi W 《Ecology letters》2006,9(7):827-834
Although some plant traits have been linked to invasion success, the possible effects of regional factors, such as diversity, habitat suitability, and human activity are not well understood. Each of these mechanisms predicts a different pattern of distribution at the regional scale. Thus, where climate and soils are similar, predictions based on regional hypotheses for invasion success can be tested by comparisons of distributions in the source and receiving regions. Here, we analyse the native and alien geographic ranges of all 1567 plant species that have been introduced between eastern Asia and North America or have been introduced to both regions from elsewhere. The results reveal correlations between the spread of exotics and both the native species richness and transportation networks of recipient regions. This suggests that both species interactions and human-aided dispersal influence exotic distributions, although further work on the relative importance of these processes is needed.  相似文献   

8.
9.
We present evidence that populations of an invasive plant species that have become re‐associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half‐sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol‐exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long‐term efficacy of biocontrol programmes.  相似文献   

10.
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location  To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results  We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths.  相似文献   

11.
Aim Insect assemblages associated with lianas in tropical forests are poorly studied compared with those associated with trees. The importance of lianas for the maintenance of local species richness of insect herbivores in tropical forests is therefore poorly understood. With this in mind, a comparative study of the relative importance of trees and lianas as hosts for phytophagous beetles was carried out. Location The study area was located in the canopy of a dry tropical forest in Parque Natural Metropolitano, Panama province, Republic of Panama. Methods A crane system was utilized to access the canopy. The number of species and host specialization of adult phytophagous beetles associated with twenty‐six liana species of ten different families, and twenty‐four tree species of twelve different families were compared. Results A total of 2561 host associations of 697 species of beetles were determined (1339 for trees and 1222 for lianas). On average 55.8 ± 6.8 beetle species were found to be associated with each tree species while the comparable number for lianas was 47.0 ± 6.1. The pooled numbers of phytophagous beetle species associated with trees and lianas, respectively, were not significantly different. However, there were significantly more species feeding on green plant parts on lianas than on trees, and there were significantly more wood eaters on trees than on lianas. Phytophagous beetles associated with lianas were significantly more specialized than the tree associates due to a higher degree of specialization among the species feeding on green plant parts of lianas. Wood eaters and flower visitors showed no differences in host specialization on different growth forms. Main conclusion The present study shows that lianas are at least as important as trees for the maintenance of local species diversity of phytophagous beetles at this site. The mechanisms that drive the patterns can only be hypothesized. Plant architecture, size, and length of growing season are probably involved. Further studies, should include measurements of plant traits to elucidate experimentally what mechanisms that drive the patterns. Additional insight would come from similar studies in other forest types, and also studies of other major taxonomic groups of arthropod herbivores.  相似文献   

12.
Riparian habitats are particularly susceptible to invasion by non‐native plants. At present, attempts to build consensus as to what the primary drivers of plant invasion in riparian ecosystems might be is hindered by the absence of common standards for data collected on plant species (e.g. occurrence, or relative abundance). Mimulus guttatus L., a non‐native riparian plant species, was used as a model to determine how environmental drivers influence two aspects of invasibility: species occurrence and abundance (assessed in relation to three variables number of patches, patch area and number of stems per patch). Mimulus occurrence and abundance, together with 20 environmental variables, were surveyed in almost 700 contiguous 50‐m‐long riverbank segments within a catchment in north‐east Scotland. More than half of the segments had been colonized by Mimulus. Occurrence and number of patches responded to similar environmental gradients, particularly bare sediment, boulders, high soil moisture, short‐statured ruderal communities, and open canopies, and tended to be highest downstream where the river was widest. In contrast to occurrence and patch number, patch area and stem number per patch were higher in the upper reaches of the catchment and were positively associated with low tree canopy and vegetation dominated by light‐demanding species and smaller‐statured species. Patch area and stem number per patch were also positively related to grazing. This study has highlighted the importance of assessing more than one measure of invasion success (occurrence or patch number and either patch area or stem number per patch), as they are each determined by a different suite of environmental variables. Abiotic factors, such as sediment availability and presence of boulders, appeared to be the major determinants of occurrence and patch number, whereas biotic factors, such as interspecific competition and grazing, were more important ecological determinants underlying area and stem number per patch.  相似文献   

13.
Biotic resistance is the ability of species in a community to limit the invasion of other species. However, biotic resistance is not widely used to control invasive plants. Experimental, functional, and modeling approaches were combined to investigate the processes of invasion by Ageratina altissima (white snakeroot), a model invasive species in South Korea. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. altissima, whereas a species identity effect would be redundant within a functional group, and (2) mixtures of species would be more resistant to invasion than monocultures. We classified 37 species of native plants into three functional groups based on seven functional traits. The classification of functional groups was based primarily on differences in life longevity and woodiness. A competition experiment was conducted based on an additive competition design with A. altissima and monocultures or mixtures of resident plants. As an indicator of biotic resistance, we calculated a relative competition index (RCIavg) based on the average performance of A. altissima in a competition treatment compared with that of the control where only seeds of A. altissima were sown. To further explain the effect of diversity, we tested several diversity–interaction models. In monoculture treatments, RCIavg of resident plants was significantly different among functional groups but not within each functional group. Fast‐growing annuals (FG1) had the highest RCIavg, suggesting priority effects (niche pre‐emption). RCIavg of resident plants was significantly greater in a mixture than in a monoculture. According to the diversity–interaction models, species interaction patterns in mixtures were best described by interactions between functional groups, which implied niche partitioning. Functional group identity and diversity of resident plant communities were good indicators of biotic resistance to invasion by introduced A. altissima, with the underlying mechanisms likely niche pre‐emption and niche partitioning. This method has most potential in assisted restoration contexts, where there is a desire to reintroduce natives or boost their population size due to some previous level of degradation.  相似文献   

14.
万方浩 《昆虫知识》2007,44(6):790-797
2002年12月,国家重点基础研究发展计划("973"项目)"农林危险生物入侵机理与控制基础研究"经科技部批准正式立项,2003年启动。文章主要介绍该项目的立项背景、主要研究内容、研究方案和技术路线、总体研究目标及研究进展。  相似文献   

15.
16.
[目的]了解长江经济带湖南区域外来入侵植物的种类构成、区系组成和区域分布,推进长江经济带湖南区域的生物多样性保护。[方法]采用实地踏查法开展长江经济带湖南区域外来入侵植物调查,以文献访查法对调查区域的入侵植物物种进行补充分析。[结果]长江经济带湖南区域有外来入侵植物41科102属146种,其中,菊科植物最多(35种),占入侵植物总种数的23.97%;外来入侵植物原产于美洲的最多(99种),占入侵植物总种数的67.81%;从生活型组成看,草本植物是长江经济带湖南区域外来入侵植物的主要组成部分,占比82.88%;从科的分布区系特征看,世界广布类型是入侵植物的主要区系类型(19科),占总科数的46.34%;从属的分布区系特征看,泛热带分布类型最多(32属),占总属数的31.38%。[结论]长江经济带湖南区域外来植物入侵呈现种类多、增速快、危害程度加重等特点,应加强对菊科入侵植物和来源于美洲入侵植物的监管。  相似文献   

17.
18.
19.
Abstract. Insights into the ecology of historic invasions by introduced species can be gained by studying long‐term patterns of invasions by native species. In this paper, we review literature in palaeo‐ecology, forest‐stand simulation modelling, and historical studies of plant species invasions to illustrate the relevance of biological inertia in plant communities to invasion ecology. Resistance to invasion occurs in part because of environmental, demographic, and biotic factors influencing the arrival and establishment of invading species. We propose that biological inertia within the resident community is a fourth component of resistance to invasion, because of the lag time inherent in eliminating resident species and perhaps their traces after environmental conditions become suitable for invasion by immigrating species. Whether or not an introduced species invades can be conditioned by the presence of the pre‐existing community (and/or its legacy) in addition to the other biotic and abiotic factors.  相似文献   

20.
We report the occurrence of Trichospilus pupivorus Ferrière, 1930 (Hymenoptera: Eulophidae) parasitizing pupae of Thagona tibialis Walker, 1855 (Lepidoptera: Lymantriidae) collected on Terminalia catappa L. (Combretaceae) tree in Viçosa, Minas Gerais, Brazil. Fifty to 75 parasitoids emerged from three pupae of Th. tibialis. This is the first record of Tr. pupivorus for the American continent and a new host record.

Relatamos a ocorrência de Trichospilus pupivorus Ferrière, 1930 (Hymenoptera: Eulophidae) parasitando pupas de Thagona tibialis Walker, 1855 (Lepidoptera: Lymantriidae) coletadas em uma árvore de Terminalia catappa L. (Combretaceae) em Viçosa, Minas Gerais, Brasil. Cinqüenta a 75 parasitóides emergiram de três pupas de Th. tibialis. Este é o primeiro relato de Tr. pupivorus no continente americano como também um hospedeiro novo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号