首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassinolide (BR) is a relatively new plant growth regulator. To test whether BR could be used to increase tolerance to water deficits in soybean, the effects of BR application on photosynthesis, assimilate distribution, antioxidant enzymes and seed yield were studied. BR at 0.1 mg l−1 was foliar applied at the beginning of bloom. Two levels of soil moisture (80% field capacity for well-watered control and 35% for drought-stressed treatment) were applied at pod initiation. BR treatment increased biomass accumulation and seed yield for both treatments. Drought stress inhibited translocation of assimilated 14C from the labeled leaf, but BR increased the translocation for both treatments. Drought stress depressed chlorophyll content and assimilation rate (A), while chlorophyll content and A of BR-treated plants were greater than that of drought-stressed plants. BR treatment increased maximum quantum yield of PS II, the activity of ribulose-1,5-bisphosphate carboxylase, and the leaf water potential of drought-stressed plants. Treatment with BR also increased the concentration of soluble sugars and proline, and the activities of peroxidase and superoxide dismutase of soybean leaves when drought-stressed. However, it decreased the malondialdehyde concentration and electrical conductivity of leaves under drought stress. This study show that BR can be used as a plant growth regulator to enhance drought tolerance and minimize the yield loss of soybean caused by water deficits.  相似文献   

2.
Drought is a major abiotic factor limiting agricultural crop production. The objective of this study was to investigate the effect of triadimefon (TDM) on leaf physiology and growth of soybean in response to drought stress. Soybean variety of Nannong 99-6 (Glycine max var.) was used to study the effects of TDM on carbon–nitrogen metabolism and root structure under drought stress with pot experiment. The results showed that drought stress significantly depressed the growth and yield regardless of spraying TDM. However, drought-stressed plants treated with TDM (D+T) showed much higher biomass and yield than those without TDM (D). Leaves of D+T plants exhibited a higher relative water content and chlorophyll content, but lower relative electric conductivity as compared with those of the D plants. Formation of lots of new roots, and more mitochondria and electron density deposits in the cells of root tips in D+T plants were noticed. Foliar glucose, fructose, and soluble sugar were increased by drought during the drought stress period. TDM decreased glucose and fructose a little during stress and the beginning stage of the recovery period but increased it later in the recovery period. Activities of sucrose synthase (SS EC 2.4.1.13), sucrose-phosphate synthase (SPS EC 2.4.1.13), and glutamine synthetase (GS EC6.3.1) and contents of NO3-N were increased by TDM. Collectively, the results indicated that TDM could effectively alleviate the adverse effects caused by drought stress, which was partially attributable to modifications in morphology and physiological characteristic.  相似文献   

3.
Green house study was aimed to investigate the effect of seed biopriming with drought tolerant isolates of Trichoderma harzianum, viz. Th 56, 69, 75, 82 and 89 on growth of wheat under drought stress and to explore the mechanism underlying plant water stress resilience in response to Trichoderma inoculation. Measurements of relative water content, osmotic potential, osmotic adjustment, leaf gas exchange, chlorophyll fluorescence and membrane stability index were performed. In addition, analysis of the phenolics, proline, lipid peroxidation and measurements of phenylalanine ammonia‐lyase activity were carried out. Seed biopriming enhanced drought tolerance of wheat as drought induced changes like stomatal conductance, net photosynthesis and chlorophyll fluorescence were delayed. Drought stress from 4 to 13 days of withholding water induced an increase in the concentration of stress induced metabolites in leaves, while Trichoderma colonisation caused decrease in proline, malondialdehyde (MDA) and hydrogen peroxide (H2O2), and an increase in total phenolics. A common factor that negatively affects plants under drought stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that seed biopriming reduced damages resulting from accumulation of ROS in stressed plants. The enhanced redox state of colonised plants could be explained by higher l ‐phenylalanine ammonia‐lyase (PAL) activity in leaves after 13 days of drought stress in Trichoderma treated plants. Similar activity was induced in untreated plants in response to drought stress but to a lower extent in comparison to treated plants. Our results support the hypothesis that seed biopriming in wheat with drought tolerant T. harzianum strains increased root vigour besides performing the process of osmoregulation. It ameliorates drought stress by inducing physiological protection in plants against oxidative damage, due to enhanced capacity to scavenge ROS and increased level of PAL, a mechanism that is expected to augment tolerance to abiotic stresses.  相似文献   

4.
This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.  相似文献   

5.
In nature, crops encounter a combination of abiotic stresses that severely limit yield. Our aim was to dynamically expose the changes of tomatoes' physiological parameters to drought, heat and their combination and thereby clarify the relationship between the responses to single and combined stress. We studied the effect of single and combined drought and heat stresses on the shoot and root of two tomato cultivars (Sufen No.14 as CV1; Jinlingmeiyu as CV2). After being exposed to combined stress for 6 days, the dry weight of shoot and root significantly decreased. The Fq′/Fm′ (quantum yield of photosystem II) was significantly lower in CV1 upon drought and combined stress and in CV2 subjected to combined stress (between days 4 and 6) compared to control. The relative water content during combined stress was significantly lower than control from day 4 to recovery day 2. On days 3 and 6, the water loss rate significantly increased under heat stress and decreased at drought and combined stress, respectively. The combined stress caused severe damages on photosystem II and chloroplast ultrastructure. The root activity after stress recovered even though drought significantly increased the activity from day 2 to day 6. Combined stress result in complex responses during tomato growth. The CV1 was more heat tolerant than CV2, but there was no varietal difference at drought and combined stress. This study contributes to the understanding of the underlying physiological response mechanism of plant to combined stress and crop improvement by providing valuable information for abiotic stress‐tolerant tomato breeding.  相似文献   

6.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l?1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.  相似文献   

7.
The modulatory effect of opera was investigated on the physiological and morphological aspects in soybean thriving in water stress environment. The data procured from current investigation indicated that water stress significantly declined the plant growth, leaf area in addition to photosynthetic efficiency, nitrate reductase activity and crop yield at various stages of growth such as vegetative (VS), flowering (FS) and pod filling stage (PFS). However, foliar application of opera (0.15%) was effective to enhance the the leaf area (42%), rate of photosynthesis (194%), and nitrate reductase activity (68%) at FS stage while the maximum enhancement in biomass accumulation (92%) and yield (119%) was observed at PFS stage as compared to their control plants. The opera is applied as foliar spray in field experiments to augment the assimilation of nitrogen and carbon in soybean which contributes to increased crop development and productivity under water stress conditions.  相似文献   

8.
To ascertain the effect of exogenously applied hydrogen peroxide (H2O2) on drought stress, we examined whether the spraying of soybean leaves with H2O2 would alleviate the symptoms of drought stress. Pre-treatment by spraying leaves with H2O2 delayed foliar wilting caused by drought stress compared to leaves sprayed with distilled water (DW). Additionally, the relative water content of drought-stressed leaves pre-treated with H2O2 was higher than that of leaves pre-treated with DW. Therefore, we analyzed the effect of H2O2 spraying on photosynthetic parameters and on the biosynthesis of oligosaccharides related to water retention in leaves during drought stress. Under conditions of drought stress, the net photosynthetic rate and stomatal conductance of leaves pre-treated with H2O2 were higher than those of leaves pre-treated with DW. In contrast to DW spraying, H2O2 spraying immediately caused an increase in the mRNA levels of d-myo-inositol 3-phosphate synthase 2 (GmMIPS2) and galactinol synthase (GolS), which encode key enzymes for the biosynthesis of oligosaccharides known to help plants tolerate drought stress. In addition, the levels of myo-inositol and galactinol were higher in H2O2-treated leaves than in DW-treated leaves. These results indicated that H2O2 spraying enabled the soybean plant to avoid drought stress through the maintenance of leaf water content, and that this water retention was caused by the promotion of oligosaccharide biosynthesis rather than by rapid stomatal closure.  相似文献   

9.
To investigate soybean responses to drought stress and growth through metabolism compensation after rehydration, and for the establishment of an optimal water-saving irrigation model, we used the soybean variety Suinong 14 as experimental material and adopted a weighing method for water control in potted plants. We exposed soybean plants to stress treatments at different growth stages using different stress levels and durations. We then studied the effects of drought stress and rehydration on soybean growth and development, osmoregulation, and endogenous hormonal regulations, as well as antioxidant systems. The results showed that drought stress inhibited increases in the soybean plant height and leaf area. This inhibition became more significant as the level, duration, and frequency of the drought stress increased. After rehydration, the soybean plant heights and leaf areas exhibited rapid increases and partial compensation for their decreased sizes. As the level, duration, and frequency of drought stress increased, the compensation effect decreased, but it did not return to the control level. Drought stress reduced the chlorophyll content and relative water content in the soybean leaves and increased the osmolyte contents, antioxidant potential, and peroxidation of the membrane lipids. In addition, the changes mentioned above became more dramatic as the drought stress level, duration, and frequency increased. Upon rehydration, various levels of growth compensation were observed in each physio-biochemical parameter. As the drought stress level, duration, and frequency increased, the compensation effect also increased. Overall, the compensation effect for drought stress that occurred at the early growth stages was higher than that at the later growth stages. Drought stress led to decreases in the ZR/IAA and ZR/ABA ratios in soybean leaves and an increase in the ABA/(IAA + GA + ZR) ratio; thus, the plant growth was inhibited. These hormone ratios exhibited more dramatic changes when the drought stress level became more severe and the stress duration was prolonged. After rehydration, these hormone ratios produced equal compensation effects. Therefore, the compensatory effect of rewatering after drought stress is conditional. Severe stress, especially long-term severe stress, will reduce the compensatory effect. At the same time, drought resistance treatment at seedling stage can improve the adaptability and compensatory effect of re-drought at grain filling stage.  相似文献   

10.
硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响   总被引:3,自引:0,他引:3  
陈伟  蔡昆争  陈基宁 《生态学报》2012,32(8):2620-2628
硅被认为是植物生长的有益元素,它能增强植物对非生物逆境和生物逆境胁迫的抗性。以抗旱性不同的一对水稻近等基因系w-14-和w-20为实验材料,采用盆栽实验,研究了干旱胁迫下硅处理对水稻生长性状、光合生理特性和矿质养分吸收的影响。结果表明,在正常水分条件下硅处理对水稻的生长及生理特性没有明显影响。干旱胁迫显著降低水稻植株的生长,叶绿素含量、叶绿素荧光参数Fv/Fm及Fv/F0值显著降低,光合作用受到明显抑制。加硅能提高干旱胁迫条件下水稻植株的生物量、水分利用效率、叶片叶绿素含量、净光合速率和蒸腾速率,而气孔导度和细胞间隙CO2浓度则下降。无论干旱与否,施硅后水稻的叶片硅含量均显著上升。两个水稻品系叶片的无机离子含量在干旱胁迫条件下均呈显著增加的趋势,而硅处理后材料w-14的叶片K+、Na+、Ca2+、Mg2+、Fe3+含量分别降低16.38%,24.50%,19.70%,21.52%,18.58%,w-20则分别降低11.64%,12.11%,16.06%,11.11%和19.15%,并使之回复到与对照更接近的水平。研究结果表明了硅提高水稻植株的抗旱性与光合作用的改善和矿质养分的调节有关。  相似文献   

11.
Drought stress negatively impacts growth and physiological processes in plants. The foliar application of glycine betaine (GB) is an effective and low-cost approach to improve the drought tolerance of trees. This study examined the effect of exogenously applied GB on the cell membrane permeability, osmotic adjustment, and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress. Two levels (0 and 800 mL) of water irrigation were tested under different applied GB concentrations (0, 50, 100, and 200 mM). Drought stress decreased the relative water content by 58.5% while increased the electric conductivity, malondialdehyde, proline, soluble proteins, soluble sugars, and antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase) by up to 62.9%, 42.4%, 87.0%, 19.1%, 60.5%, 68.3%, 71.7%, and 83.8%, respectively, on the 25th day. The foliar application of GB, especially at 100 mM, increased the relative water content of P. hunanensis leaves under drought stress. The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products. Under drought stress, the concentrations of proline, soluble proteins, and soluble sugars in the leaves of P. hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged. Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application. Furthermore, the physiological and biochemical indexes of P. hunanensis showed a certain dose effect on exogenous GB concentration. These results suggest that GB helps maintain the drought tolerance of P. hunanensis.  相似文献   

12.
Silicon is known to compensate crop yield losses under diverse biotic and abiotic stress conditions; however, reports about its protective role for plants exposed to brackish water stress are very limited. A pot culture experiment was conducted to assess the beneficial effect of silicon supplementation (0 and 100 mg/kg) in alleviating growth adversities of brackish water (saline, sodic, alkaline, and saline–sodic water) stress in two contrasting sunflower cultivars, SF-187 (salt tolerant), and Hysun-33 (salt sensitive) grown in greenhouse. Results demonstrated that hostile growth environments, mainly the combined stress of saline–sodic water, severely affected the physiological attributes, growth, yield, and yield contributing components in sunflower. However, the response to brackish water stress differed genotypically, with greater magnitude of damage to the Hysun-33 as compared to SF-187 genotype. It hampered plant growth due to membrane damage and reduced water uptake, but silicon supplementation minimized the negative effects of stress by limiting toxic Na+ ions uptake, improving membrane stability, and increasing relative water contents caused by higher silicon and K+ uptake that eventually led to improved biomass yield. The response was further evaluated at yield level and data regarding head diameter, achene yield, and 100 achene weight were taken. Results indicated that silicon supplementation to growth medium of saline and/or sodic water treated plants significantly enhanced the head diameter (22–30%), thus ultimately producing 15–25% higher achene yield, and weight of the biological harvest of both sunflower genotypes. Overall, the beneficial effect of silicon supplementation was more evident in Hysun-33 (salt sensitive) as compared to SF-187 (salt tolerant) genotype. Taken together, the results of this study suggest silicon fertilization as a potential strategy to increase crop productivity under brackish water stress; however, experimental trials at farmer field level should be conducted before setting any recommendations.  相似文献   

13.
Silvente S  Sobolev AP  Lara M 《PloS one》2012,7(6):e38554
Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis combined with the physiological studies we assessed the effects of short-term water stress on overall growth, nitrogen fixation, ureide and proline dynamics, as well as metabolic changes in drought tolerant (NA5009RG) and sensitive (DM50048) genotypes of soybean in order to elucidate metabolite adjustments in relation to the physiological responses in the nitrogen-fixing plants towards water limitation. The results of our analysis demonstrated critical differences in physiological responses between these two genotypes, and identified the metabolic pathways that are affected by short-term water limitation in soybean plants. Metabolic changes in response to drought conditions highlighted pools of metabolites that play a role in the adjustment of metabolism and physiology of the soybean varieties to meet drought effects.  相似文献   

14.

Background

Water and nutritional restrictions are limiting factors for the growth of Eucalyptus trees in tropical climates. In the dry season, boron (B) uptake is severely affected.

Aims

The objectives of this study were to evaluate the phloem mobility of B and whether its deficiency can increase plant sensitivity to osmotic stress. It was also tested to what extent foliar application of B could mitigate the negative effects of drought under low B supply.

Methods

Seedlings of a drought tolerant Eucalyptus urophylla (Blake, S. T.) clone were grown in nutrient solution, subjected to low availability of B for 25 days, and then submitted to a progressive osmotic stress. After imposition of osmotic stress, B was applied to young or mature leaves.

Results

B applications, mainly to mature leaf, stimulated root growth and delayed dehydration under osmotic stress and led to an increased B translocation and carbon isotopic composition. The expression of B transporters and pectin metabolism genes were also increased in water-stressed plants supplied with B by foliar application.

Conclusions

B deficiency led to increased plant dehydration and decreased root growth under osmotic stress. The application of B to mature leaf of water-stressed plants proved effective in mitigating the negative effects of water deficit in root growth.  相似文献   

15.
Water is essential for the growth period of crops; however, water unavailability badly affects the growth and physiological attributes of crops, which considerably reduced the yield and yield components in crops. Therefore, a pot experiment was conducted to investigate the effect of foliar phosphorus (P) on morphological, gas exchange, biochemical traits, and phosphorus use efficiency (PUE) of maize (Zea mays L.) hybrids grown under normal as well as water deficit situations at the Department of Agronomy, University of Agriculture Faisalabad, Pakistan in 2014. Two different treatments (control and P @ 8 kg ha−1 ) and four hybrids (Hycorn, 31P41, 65625, and 32B33) of maize were tested by using a randomized complete block design (RCBD) with three replications. Results showed that the water stress caused a remarkable decline in total soluble protein (9.7%), photosynthetic rate (9.4%) and transpiration rate (13.4%), stomatal conductance (10.2%), and internal CO2 rate (20.4%) comparative to well-watered control. An increase of 37.1%, 36.8%, and 24.5% were recorded for proline, total soluble sugar, and total free amino acid, respectively. However, foliar P application minimized the negative impact of drought by improving plant growth, physio-biochemical attributes, and PUE in maize plants under water stress conditions. Among the hybrids tested, the hybrid 6525 performed better both under stress and non-stress conditions. These outcomes confirmed that the exogenous application of P improved drought stress tolerance by modulating growth, physio-biochemical attributes, and PUE of maize hybrids.  相似文献   

16.
17.
Salinity and drought are two very important abiotic stressors that negatively impact the growth and yield of all sensitive crop plants. Genes from halophytes have been shown to be useful to engineer crop plants that can survive under adverse soil and water conditions. The present report establishes, for the first time, the physiological role of a class one ADP ribosylation factor gene (SaARF1) from the halophyte Spartina alterniflora (smooth cordgrass) in imparting salinity and drought stress tolerance when expressed in both monocot (rice) and dicot (Arabidopsis) systems. The Arabidopsis and rice plants overexpressing ARF1 are many-fold more tolerant to salt and drought than wild-type (WT) plants. The transgenics exhibited improved growth and productivity relative to WT through tissue tolerance by maintaining higher relative water content and membrane stability, and higher photosynthetic yield by retaining higher chlorophyll concentration and fluorescence under stress conditions compared to WT. These findings indicated that genes from halophyte resources can be useful to engineer and improve salt and drought stress tolerance in both monocot and dicot plants.  相似文献   

18.
CO2浓度升高和干旱带来的气候变化势必对大豆的生长造成影响.目前,CO2浓度升高对干旱胁迫下大豆生理生化的影响研究较少.本试验研究了不同CO2浓度(400、600 pumol ? mol-1)和水分处理下(正常水分:叶片相对含水量为83%-90%;干旱:叶片相对含水量为64%-70%)大豆开花期的光合能力、光合色素积累...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号