首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly, but its mechanism remains unclear. Scaffold protein prohibitin 2 (PHB2) has been widely involved in aging and neurodegeneration. However, the role of PHB2 in ARHL is undeciphered to date. To investigate the expression pattern and the role of PHB2 in ARHL, we used C57BL/6 mice and HEI-OC1 cell line as models. In our study, we have found PHB2 exists in the cochlea and is expressed in hair cells, spiral ganglion neurons, and HEI-OC1 cells. In mice with ARHL, mitophagy is reduced and correspondingly the expression level of PHB2 is decreased. Moreover, after H2O2 treatment the mitophagy is activated and the PHB2 expression is increased. These findings indicate that PHB2 may exert an important role in ARHL through mitophagy. Findings from this study will be helpful for elucidating the mechanism underlying the ARHL and for providing a new target for ARHL treatment.  相似文献   

2.
The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.  相似文献   

3.
4.
Therapeutic potential of neurotrophins for treatment of hearing loss   总被引:3,自引:0,他引:3  
Degeneration of spiral ganglion neurons (SGNs) and hair cells in the cochlea induced by aging, injury, ototoxic drugs, acoustic trauma, and various diseases is the major cause of hearing loss. Discovery of growth factors that can either prevent SGN and hair-cell death or stimulate hair-cell regeneration would be of great interest. Studies over the past several years have provided evidence that specific neurotrophins are potent survival factors for SGNs and protect these neurons from ototoxic drugs in vitro and in vivo. Current research focuses more on understanding the mechanism of hair-cell regeneration/differentiation and identification of growth factors that can stimulate hair-cell regeneration. SGNs are required to relay the signal to the central nervous system even when a cochlear implant is used to replace hair-cell function or in the case that cochlear sensory epithelium can be stimulated to regenerate new hair cells successfully. Therefore, neurotrophins may have their therapeutic value in prevention and treatment of hearing impairment.  相似文献   

5.
Gap junctions in the cochlear lateral wall, which consists of the stria vascularis (SV) and spiral ligament (SPL), are important for generating a positive endocochlear potential and high potassium concentration in the endolymph. In this study, the cellular expression of connexin 26 (Cx26) and Cx30 in the cochlear lateral wall of rats and guinea pigs was examined by immunofluorescent staining and confocal microscopy. Co-labeling for Kir4.1 revealed that the stria intermediate cells had extensive labeling for Cx26 and Cx30 with a leaf-like distribution. Cx26 and Cx30 also co-distributed hexagonally around the basal cells. However, no labeling was observed in the marginal cells. In the SPL, punctate Cx26 and Cx30 labeling was distributed along vertical lines orthogonal to the cochlear longitudinal direction. Intense labeling for Cx26 and Cx30 was found in type II fibrocytes in the spiral prominence and central region, but Cx26 labeling was absent in the middle region just beneath the SV, where only Cx30 labeling was observed. Outer sulcus (OS) cells and their root processes also exhibited intense labeling for Cx26 and Cx30. Neither Cx26 nor Cx30 was immunopositive in the hyaline region beneath the OS, in the subcentral region (type IV fibrocytes), or in the tension (type III) fibrocytes beneath the bone. Cx26 and Cx30 labeling was also absent in the lateral wall blood vessels. Thus, Cx26 and Cx30 have distinct cell-specific distributions in the SV and SPL, suggesting that they can form different pathways for transporting ions/nutrients in the cochlear lateral wall.  相似文献   

6.
A large proportion of recessive nonsyndromic hearing loss is due to mutations in the GJB2 gene encoding connexin 26 (Cx26), a component of a gap junction. Within different ethnic groups there are specific common recessive mutations, each with a relatively high carrier frequency, suggesting the possibility of heterozygous advantage. Carriers of the R143W GJB2 allele, the most prevalent in the African population, present with a thicker epidermis than noncarriers. In this study, we show that (R143W)Cx26-expressing keratinocytes form a significantly thicker epidermis in an organotypic coculture skin model. In addition, we show increased migration of cells expressing (R143W)Cx26 compared to (WT)Cx26-overexpressing cells. We also demonstrate that cells expressing (R143W)Cx26 are significantly less susceptible to cellular invasion by the enteric pathogen Shigella flexneri than (WT)Cx26-expressing cells. These in vitro studies suggest an advantageous effect of (R143W)Cx26 in epithelial cells. The first two authors contributed equally to this work.  相似文献   

7.
The present study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 h a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into four groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by auditory brainstem response (ABR) and compound action potential (CAP) recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed 1 day, 1 week, and 1 month after noise exposure. After MTMI noise exposure, the amplitudes of ABR I and III waves were suppressed. The CAP threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement, or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss (HHL), which is partially reversible after leaving the noise environment; and MTMI noise-induced HHL is associated with inner hair cell ribbon synapses.  相似文献   

8.
Connexin26 (Cx26), one of the major protein subunits forming gap junctions (GJs), is important in maintaining homeostasis in the inner ear and normal hearing. Cx26 mutation is one of the most common causes for inherited nonsyndromic deafness, but the relationship between Cx26 and presbycusis is unknown. Our study aimed at exploring the expression and the aberrant methylation of the promoter region of Cx26 gene in the cochlea of inner ear mimetic aging rats. We applied a mimetic aging of inner ear rat model with mtDNA common deletion by d-gal injection for 8 weeks. Real-time RT-PCR and Western blot of rat inner ear tissue indicated that the Cx26 expression decreased in the d-gal group. Further bisulfite sequencing analysis revealed that the methylation status of the promoter region of Cx26 gene in the d-gal group was higher than that in control group. These results indicated that the decrease of Cx26 expression might contribute to the development of presbycusis and the hypermethylation of promoter region of GJB2 might be associated with the Cx26 downregulation.  相似文献   

9.
A region in the vicinity of D17Mit119 on mouse chromosome 17 harbors a susceptibility gene, designated as Ahl3, to age-related hearing loss (AHL). We produced congenic lines of C57BL/6 background that substituted regions around D17Mit119 with MSM-derived ones, and examined auditory brainstem response (ABR) thresholds for their hearing capacity at 6 and 12months of age. Three congenic lines carrying the approximately 14-Mb region between D17Mit274 and D17Mit183 retained normal hearing at 12months of age whereas two congenic lines not carrying this region tended to lose hearing at that age. We also investigated noise-induced hearing loss (NIHL) in congenic lines at 1, 7 and 14days after exposure to the noise of 100dB for 1h. Most congenic mice carrying the 14-Mb region did not exhibit permanent threshold shift (PTS) whereas mice not carrying this region exhibited a strong tendency of PTS, indicating the role of Ahl3 in susceptibility to NIHL. These results indicate that Ahl3 exists within the 14-Mb region and affects not only AHL but also NIHL.  相似文献   

10.
间隙连接蛋白 (Cx)基因在胚胎发育、细胞生长、分化以及细胞内环境的稳定过程中起重要调节作用 .肿瘤发生与Cx基因的表达及功能异常密切相关 ,肿瘤细胞常存在Cx基因表达下调或缺失 .将人Cx2 6基因编码区cDNA序列 ,亚克隆于真核表达载体pcDNA3 1(+) ,采用脂质体转染 ,将重组表达载体pcDNA3 1(+) Cx2 6转入鼻咽癌细胞系HNE1,使Cx2 6基因在HNE1中重表达 ,探讨Cx2 6基因对鼻咽癌细胞系HNE1的生物学功能的影响 .研究结果表明 :Cx2 6基因的重表达 ,抑制HNE1细胞生长 ,细胞周期阻滞于G0 G1期 ,HNE1细胞的克隆形成能力下降 ,裸鼠致瘤能力减弱 .  相似文献   

11.
Noise‐induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain‐of‐function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down‐regulated ROR1, Wnt5a and NF‐κB p65. The up‐regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro‐apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti‐apoptotic gene (Bcl‐2) and the fluorescence intensity of cleaved‐caspase‐3. ROR1 interacted with Wnt5a to activate the NF‐κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a‐dependent NF‐κB signalling pathway.  相似文献   

12.
Hearing loss is the most frequent sensory disorder. It affects 3 in 1000 newborns. It is genetically heterogeneous with 60 causally-related genes identified to date. Mutations in GJB2 gene account for half of all cases of non-syndromic deafness. The aim of this study was to determine the relative frequency of GJB2 allele variants in Tunisia. In this study, we screened 138 patients with congenital hearing loss belonging to 131 families originating from different parts of Tunisia for mutations in GJB2 gene. GJB2 mutations were found in 39% of families (51/131). The most common mutation was c.35delG accounting for 35% of all cases (46/131). The second most frequent mutation was p.E47X present in 3.8% of families. Four identified mutations in our cohort have not been reported in Tunisia; p.V37I, c.235delC, p.G130A and the splice site mutation IVS1+1G>A (0.76%). These previously described mutations were detected only in families originating from Northern and not from other geographical regions in Tunisia. In conclusion we have confirmed the high frequency of c.35delG in Tunisia which represents 85.4% of all GJB2 mutant alleles. We have also extended the mutational spectrum of GJB2 gene in Tunisia and revealed a more pronounced allelic heterogeneity in the North compared to the rest of the country.  相似文献   

13.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

14.
15.
Using senescence marker protein 30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice, which cannot synthesize vitamin C (VC), we examined whether modulating VC level affects age-related hearing loss (AHL). KO and wild-type (WT) C57BL/6 mice were given water containing 1.5 g/L VC [VC(+)] or 37.5 mg/L VC [VC(−)]. At 10 months of age, KO VC(−) mice showed significant reduction in VC level in the inner ear, plasma, and liver, increase in auditory brainstem response (ABR) thresholds, and decrease in the number of spiral ganglion cells compared to WT VC(−), WT VC(+), and KO VC(+) mice. There were no differences in VC level in the inner ear, ABR thresholds, or the number of spiral ganglion cells among WT VC(−), WT VC(+), and KO VC(+) mice. These findings suggest that VC depletion can accelerate AHL but that supplementing VC may not increase VC level in the inner ear or slow AHL in mice.  相似文献   

16.
Mutations in the GJB2 gene, encoding the gap-junction channel protein connexin 26, account for the majority of recessive forms and some of the dominant cases of deafness. Here, we report the frequency of GJB2 alleles in the Italian population affected by hearing loss and the functional analysis of six missense mutations. Genetic studies indicate that, apart from the common 35delG, only few additional mutations can be detected with a significant frequency in our population. Transfection of communication-incompetent HeLa cells with Cx26 missense mutations revealed three distinct classes of functional deficits in terms of protein expression, subcellular localisation and/or functional activity. Moreover, the M34T mutant acted as a dominant inhibitor of wild-type Cx26 channel activity when the two proteins were co-expressed in a manner mimicking a heterozygous genotype. These data support the hypothesis of a functional role for M34T as a dominant allele and represent a further step towards a complete understanding of the role of GJB2 in causing hearing loss.  相似文献   

17.
Mutations in the gene coding for connexin26 (Cx26) is the most common cause of human nonsyndromic hereditary deafness. To investigate deafness mechanisms underlying Cx26 null mutations, we generated three independent lines of conditional Cx26 null mice. Cell differentiation and gross cochlear morphology at birth seemed normal. However, postnatal development of the organ of Corti was stalled as the tunnel of Corti and the Nuel’s space were never opened. Cell degeneration was first observed in the Claudius cells around P8. Outer hair cell loss was initially observed around P13 at middle turn when inner hair cells were still intact. Massive cell death occurred in the middle turn thereafter and gradually spread to the basal turn, resulting in secondary degeneration of spiral ganglion neurons in the corresponding cochlear locations. These results demonstrated that Cx26 plays essential roles in postnatal maturation and homoeostasis of the organ of Corti before the onset of hearing.  相似文献   

18.
Genetic variation in humans probably plays a role in determining the range of individual susceptibility to age-related hearing loss (AHL), but no contributing loci have been identified because of the difficulties of dissecting complex traits in humans. This paper reports mapping of an AHL locus using a panel of consomic mice between C57BL/6J (B6) and MSM strains, which covered more than a half of chromosome sets. B6 strain exhibited AHL beginning at 10 months of age whereas MSM strain, derived from Japanese wild mice, had normal hearing throughout life. Individuals in the panel were examined with auditory brainstem response (ABR) at various months of age, revealing that one particular strain (B6-Chr17(MSM)) substituting the chromosome 17 with the MSM-derived one showed a prominent resistance, having still good hearing at 18 months of age. Subsequent mapping using 89 individuals in the cross between B6-Chr17(MSM) and B6 was performed, which showed a significant association of ABR thresholds with loci in the vicinity of D17Mit119. These results show a novel AHL-resistant locus, designated as Ahl3, on the chromosome 17.  相似文献   

19.
Lipopolysaccharide‐responsive beige‐like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain‐containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein‐truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.  相似文献   

20.
《Developmental cell》2022,57(18):2204-2220.e6
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号