首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Alexander Kowalevsky was one of the most significant 19th century biologists working at the intersection of evolution and embryology. The reinstatement of the Alexander Kowalevsky Medal by the St. Petersburg Society of Naturalists for outstanding contributions to understanding evolutionary relationships in the animal kingdom, evolutionary developmental biology, and comparative zoology is timely now that Evo-devo has emerged as a major research discipline in contemporary biology. Consideration of the intellectual lineage of comparative evolutionary embryology explicitly forces a reconsideration of some current conceptions of the modern emergence of Evo-devo, which has tended to exist in the shadow of experimental embryology throughout the 20th century, especially with respect to the recent success of developmental biology and developmental genetics. In particular we advocate a sharper distinction between the heritage of problems and the heritage of tools for contemporary Evo-devo. We provide brief overviews of the work of N. J. Berrill and D. T. Anderson to illustrate comparative evolutionary embryology in the 20th century, which provides an appropriate contextualization for a conceptual review of our research on the sea urchin genus Heliocidaris over the past two decades. We conclude that keeping research questions rather than experimental capabilities at the forefront of Evo-devo may be an antidote to any repeat of the stagnation experienced by the first group of evolutionary developmental biologists over one hundred years ago and acknowledges Kowalevsky's legacy in evolutionary embryology.  相似文献   

2.
Some contributions to evolutionary theory, from the “orthodox” Synthesis to the “Evo-devo Super synthesis” 1970–2009: A point of view. The “Modern Synthesis” of evolutionary biology coalesced and revitalized evolutionary theory beginning in the 1930s. It stressed the explanatory power of natural selection and gradual change to account for the processes that govern natural populations today, as well as patterns in the history of life. In the past 40 years, the synthesis has been challenged on various fronts ranging from paleontology to developmental biology, systematics, biogeography, and molecular and developmental biology. Several of its central propositions have been modified and expanded as a result. How well the synthesis continues to be effective will depend on its continued ability to test its central propositions and the efficacy of its central mechanisms, particularly on the basis of new evidence from emerging fields of study.  相似文献   

3.
植物进化发育生物学的形成与研究进展   总被引:2,自引:0,他引:2  
植物进化发育生物学是最近十几年来才兴起的一门学科, 它是进化发育生物学的主要分支之一。进化发育生物学的产生经历了进化生物学与胚胎学、遗传学和发育生物学的三次大的综合, 其历史可追溯到19世纪初冯.贝尔所创立的比较胚胎学。相关研究曾沉寂了近一个世纪, 直到20世纪80年代早期, 动物中homeobox基因被发现, 90年代初花发育的 ABC模型被提出, 加之对发育相关基因研究的不断深入, 才使基因型与表型联系了起来, 进而促进了进化发育生物学的飞速发展。目前进化发育生物学已成为21世纪生命科学领域的研究热点之一。本文详细阐述了进化发育生物学产生和发展的历程, 综述了最近十几年来植物进化发育生物学的主要研究进展。文中重点介绍了与植物发育密切相关的MADS-box基因在植物各大类群中的研究现状, 讨论了植物进化发育生物学领域的研究成果对花被演化、花对称性以及叶的进化等重要问题的启示。  相似文献   

4.
植物进化发育生物学的形成与研究进展   总被引:2,自引:0,他引:2  
植物进化发育生物学是最近十几年来才兴起的一门学科,它是进化发育生物学的主要分支之一。进化发育生物学的产生经历了进化生物学与胚胎学、遗传学和发育生物学的三次大的综合,其历史可追溯到19世纪初冯.贝尔所创立的比较胚胎学。相关研究曾沉寂了近一个世纪,直到20世纪80年代早期,动物中homeobox基因被发现,90年代初花发育的ABC模型被提出,加之对发育相关基因研究的不断深入,才使基因型与表型联系了起来,进而促进了进化发育生物学的飞速发展。目前进化发育生物学已成为21世纪生命科学领域的研究热点之一。本文详细阐述了进化发育生物学产生和发展的历程,综述了最近十几年来植物进化发育生物学的主要研究进展。文中重点介绍了与植物发育密切相关的MADS-box基因在植物各大类群中的研究现状,讨论了植物进化发育生物学领域的研究成果对花被演化、花对称性以及叶的进化等重要问题的启示。  相似文献   

5.
Decrying the typological approach in much of the teaching of morphology, from the outset of her career Marvalee Wake advocated a synthetic, mechanistic and pluralistic developmental and evolutionary morphology. In this short essay, I do not evaluate Wake's contributions to our knowledge of the morphology of caecilians, nor her contributions to viviparity, both of which are seminal and substantive, nor do I examine her role as mentor, supervisor and collaborator, but assess her broader conceptual contributions to the development and evolution of morphology as a science. One of the earliest morphologists to take on board the concept of constraint, she viewed constraint explicitly in relation to adaptation and diversity. Her approach to morphology as a science was hierarchical – measure form and function in a phylogenetic context; seek explanations at developmental, functional, ecological, evolutionary levels of the biological hierarchy; integrate those explanations to the other levels. The explanatory power of morphology thus practised allows morphology to inform evolutionary biology and evolutionary theory, and paves the way for the integrative biology Wake has long championed.  相似文献   

6.
Recently, Forber introduced a distinction between two kinds of how-possibly explanation, global and local how-possibly explanation, and argued that both play genuinely explanatory roles in evolutionary biology. In this paper I examine the nature of these two kinds of how-possibly explanations, focusing on the question whether they indeed constitute genuine explanations. I will conclude that one of Forber's kinds of how-possibly explanation may be thought of as a kind of genuine explanation but not as a kind of how-possibly explanation, while the other kind plays a heuristic role and should not be conceived of as a kind of explanation at all.  相似文献   

7.
The validity and value of inclusive fitness theory   总被引:1,自引:0,他引:1  
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.  相似文献   

8.
Reydon (2012) comments on my account of how-possibly explanation (Forber, 2010). I distinguish between three types of explanation (global how-possibly, local how-possibly, and how actually) and argue that these distinctions track various roles explanations play in evolutionary biology. While Reydon accepts the distinctions, he questions whether the two different types of how-possibly explanation count as genuine explanations. He summarizes his analysis with a slogan: “global how-possibly explanations are explanations but not how-possibly; local explanations are how-possibly but not explanations.” Reydon’s commentary raises a number of insightful points, and I will not be able to address them all. Instead, after clarifying certain points in my original paper (4 1), I will respond to Reydon’s slogan by addressing whether global how-possibly explanations should count as explaining how possible (4 2), and what (so-called) local how-possibly explanations are, if not explanations (4 3).  相似文献   

9.
Chance comes into plays at many levels of the explanation of the evolutionary process; but the unity of sense of this category is problematic. The purpose of this talk is to clarify the meaning of chance at various levels in evolutionary theory: mutations, genetic drift, genetic revolutions, ecosystems, macroevolution. Three main concepts of chance are found at these various levels: luck (popular concept), randomness (probabilistic concept), and contingency relative to a given theoretical system (epistemological concept). After identifying which concept(s) of chance fit(s) with these levels, the question is raised whether these concepts can be reduced to a smaller number, and whether chance in evolutionary theory has a subjective or an objective sense.  相似文献   

10.
11.
The limited value most French biologists attributed to Darwinism and Mendelism in the first half of the twentieth century, and their conviction that these theories were at best insufficient to explain evolution and development, probably created conditions propitious to the development of Evo-devo at the end of the century. The separation between embryology and evolution did not exist in French biology as it did in American genetics: explanations for these two phenomena were sought equally in the “organization” of the egg. The major contribution of French biologists to Evo-devo was clearly the invention of the notion of the regulatory gene by Jacob and Monod; not the operon model per se, but the introduction of a hierarchy between two different kinds of genes. The consequence, the rise of the developmental gene concept, was not immediate, and required the active role of other biologists such as Antonio Garcia-Bellido, Allan Wilson and Stephen Jay Gould. Various obstacles had to be overcome for this concept of developmental gene to be fully accepted.  相似文献   

12.
Functional morphology and evolutionary biology   总被引:4,自引:1,他引:3  
In this study the relationship between functional morpholoy and evolutionary biology is analysed by confronting the main concepts in both disciplines.Rather than only discussing this connection theoretically, the analysis is carried out by introducing important practical and experimental studies, which use aspects from both disciplines. The mentioned investigations are methodologically analysed and the consequences for extensions of the relationship are worked out. It can be shown that both disciplines have a large domain of their own and also share a large common ground. Many disagreements among evolutionary biologists can be reduced to differences in general philosophy (idealism vs. realism), selection of phenomenona (structure vs. function), definition of concepts (natural selection) and the position of the concept theory as an explaining factor (neutralists vs. selectionists, random variation, determinate selection, etc.).The significance of functional morphology for evolutionary biology, and vice versa depends on these differences. For a neo-Darwinian evolutionary theory, contributions from functional and ecological morphology are indispensable. Of ultimate importance are the notions of internal selection and constraints in the constructions determining further development. In this context the concepts of random variation and natural selection need more detailed definition.The study ends with a recommendation for future research founded in a system-theoretical or structuralistic conception.  相似文献   

13.
Organisms exhibit an incredible diversity of form, a fact that makes the evolution of novelty seemingly self-evident. However, despite the "obvious" case for novelty, defining this concept in evolutionary terms is highly problematic, so much so that some have suggested discarding it altogether. Approaches to this problem tend to take either an adaptation- or development-based perspective, but we argue here that an exclusive focus on either of these misses the original intent of the novelty concept and undermines its practical utility. We propose instead that for a feature to be novel, it must have evolved both by a transition between adaptive peaks on the fitness landscape and that this transition must have overcome a previous developmental constraint. This definition focuses novelty on the explanation of apparently difficult or low-probability evolutionary transitions and highlights how the integration of developmental and functional considerations are necessary to evolutionary explanation. It further reinforces that novelty is a central concern not just of evolutionary developmental biology (i.e., "evo-devo") but of evolutionary biology more generally. We explore this definition of novelty in light of four examples that range from the obvious to subtle. J. Exp. Zool. (Mol. Dev. Evol.) 318B:501-517, 2012. ? 2012 Wiley Periodicals, Inc.  相似文献   

14.
Social scientists, especially anthropologists, have long endeavored to understand the evolution of "human nature." This investigation frequently focuses on the relative importance of competition versus cooperation in human evolutionary trajectories and usually results in a primary emphasis on competition, aggression, and even war in attempting to understand humanity. This perspective conflicts with long-standing perspectives in anthropology and some emerging trends and theory in evolutionary biology and ecology. Cooperation and competition are not mutually exclusive in an evolutionary context. As anthropologists, we have demonstrated that humans can–and usually do–get along. Evolution is complex with multiple processes and patterns, not all of which involve competition and conflict. In this article, I summarize elements of modern ecological and evolutionary theory in the context of human cooperative patterns in an attempt to illustrate the valuable role of evolutionary theory and cooperative patterns in integrative anthropological approaches to the human condition.  相似文献   

15.
Many authors, including paleobiologists, cladists and so on, adopt a nested hierarchical viewpoint to examine the relationships among different levels of biological organization. Furthermore, species are often considered to be unique entities in functioning evolutionary processes and one of the individuals forming a nested hierarchy.I have attempted to show that such a hierarchical view is inadequate in evolutionary biology. We should define units depending on what we are trying to explain. Units that play an important role in evolution and ecology do not necessarily form a nested hierarchy. Also the relationships among genealogies at different levels are not simply nested. I have attempted to distinguish the different characteristics of passages when they are used for different purposes of explanation. In my analysis, species and monophyletic taxa cannot be uniquely defined as single units that function in ecological and evolutionary processes.The view discussed in this paper may provide a more general basis for testing competing theories in evolution, and provide new insights for future empirical studies.  相似文献   

16.
Darwin's theory did not touch upon the problem of evolution of tissues. An attempt made by Heckel to explain phylogeny of tissues, basing on principles of selection and divergence, failed. It was not at once understood that evolution of separate levels of organization possessed certain specificity. The theory of parallelism, suggested by A. A. Zavarzin, stated the notion on specific regularities in evolution of tissues. Having analysed the correlation between the theory of evolution and evolutional histology, A. A. Zavarzin demonstrated that darwinism developed predominantly at the theory of speciation. This approach is correct for the period of the new evolutionary synthesis, too. The synthetic theory of evolution does not take into consideration evolution of tissues. A. A. Zavarzin's theory contributed to reorganization of methodology of the evolutional biology. The historical method was enriched by a certain principle on specific regularities of evolution for each level of organization in the alive. Simultaneously, the genesis of the parallelism theory discovered that correct explanation of the regularities in evolution of tissues is possible only under conditions that the evolution of histostructures can be inserted into the evolution of ontogenesis and species.  相似文献   

17.
Although convergence is recognized as a central concept in evolutionary biology, very few tools are available for the quantitative study of this phenomenon. Moreover, although many evolutionary assertions assume that convergence should be rare in the absence of influences on organismal phenotypes such as natural selection or constraint, no studies have tested whether this is the case. I simulate random evolution (Brownian motion model) of quantitative characters along phylogenies with varying numbers of terminal taxa, numbers of traits, variance structure, and tree balance, and quantify the amount of convergence observed in these datasets using four metrics. The amount of convergence observed in a dataset increases with increasing number of taxa and decreasing number of traits, approaching the maximum possible amount of convergence under certain circumstances. Some convergence is expected in almost all datasets. Comparison of empirical datasets to those produced by random evolution provides a test of whether empirical datasets actually show elevated levels of convergence. Out of three test datasets, two show more convergence than expected. Given that high levels of convergence can be produced simply by random evolution, no explanation may be necessary for instances of convergence discovered in an evolutionary investigation.  相似文献   

18.
Students in a large introductory biology course at Flinders University, South Australia, were quizzed on misconceptions relating to evolution and their acceptance of evolutionary theory before and after completing the course. By providing students with a course featuring a multifaceted approach to learning about evolution, students improved their understanding and decreased their overall misconceptions. A variety of instructional methods and assessment tools were utilized in the course, and it employed an active and historically rich pedagogical approach. Although student learning and understanding of evolutionary theory improved throughout the course, it did not alter the beliefs of students who commented both before and after the course that religious theories provided adequate explanation for the diversity of life. Interestingly, students who maintained this belief scored more poorly on the final examination than students who considered evolution as the best explanation for the diversity of life.  相似文献   

19.
Based on recent advances in experimental embryology and molecular genetics, the morphogenetic program for the vertebrate cranium is summarized and several unanswered classical problems are reviewed. In particular, the presence of mesodermal segmentation in the head, the homology of the trabecular cartilage, and the origin of the dermal skull roof are discussed. The discovery of the neural-crest-derived ectomesenchyme and the roles of the homeobox genes have allowed the classical concept of head segmentation unchanged since Goethe to be re-interpreted in terms of developmental mechanisms at the molecular and cellular levels. In the context of evolutionary developmental biology, the importance of generative constraints is stressed as the developmental factor that generates the homologous morphological patterns apparent in various groups of vertebrates. Furthermore, a modern version of the germ-layer theory is defined in terms of the conserved differentiation of cell lineages, which is again questioned from the vantage of evolutionary developmental biology.  相似文献   

20.
Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin''s notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll''s phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号