首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrial myocardium is the source of a recently described peptide hormone termed atriopeptin. Atriopeptin is thought to have a role in the regulation of systemic arterial pressure, fluid balance and plasma electrolyte homeostasis. Isolated rat hearts release atriopeptin into the coronary effluent, and we have found that this release is stimulated by the administration of norepinephrine, a compound with alpha and beta adrenergic properties. Infusion of the pure beta-receptor agonist, isoproterenol, failed to stimulate the release; however, the alpha-1 receptor agonist phenylephrine induced the release in a dose-dependent manner. The stimulation of atriopeptin release by norepinephrine and phenylephrine was inhibited by alpha-blockade with phentolamine. Administration of BHT-920, a selective alpha-2 agonist, had no effect on atriopeptin release. We conclude that atriopeptin secretion by the atrial myocyte is stimulated by activation of the alpha-1 adrenergic receptor. This finding suggests an involvement of the sympathetic nervous system in the physiologic regulation of the secretion of this hormone.  相似文献   

2.
The renal cell culture model, LLC-PK1, which contains an amiloride-sensitive conductive Na+ transport pathway and a Na+/H+ exchanger, was utilized to examine the direct effects of atriopeptin II and cGMP on Na+ transport in epithelial cells. Exposure of cells to atriopeptin II (10(-7) M) increased cGMP production within 2 min of addition to cells in monolayer. Atriopeptin II (10(-7) M) or exogenous 8-bromo-cGMP (10(-3) M) maximally inhibited the uptake of 22Na+ through the conductive pathway which accounted for up to 60% of total 22Na+ uptake. The apparent Ki for this inhibition by atriopeptin II was 2 X 10(-11) M. Amiloride inhibited 22Na+ uptake to a similar extent as atriopeptin II, and the effects of the presence of both agents was not additive. In contrast, neither atriopeptin II nor cGMP blunted the increment in 22Na+ uptake induced by a pH gradient. Thus atriopeptin II can directly inhibit Na+ transport in renal epithelial cells, probably through its stimulation of cGMP.  相似文献   

3.
The direct action of atriopeptin on the cell regulation mechanism of the smooth muscle in isolated segments of the portal vein, aorta, pancreatic and cerebral arteries have been studied. It was found that atriopeptin induce the direct relaxation of the smooth muscle in the main vessels only (aorta, portal vein). In the cerebral and pancreatic arteries atriopeptin stops norepinephrine-induced contractions. The data obtained show that the action of the atriopeptin is mediated by Na+-K+ pump activation of smooth muscle cells and restricts vasoconstriction of catecholamine effect.  相似文献   

4.
Atriopeptins are circulating peptide hormones which are secreted by atrial tissue and act at the kidney. Because the atriopeptins survive passage through the pulmonary circulation, they also may be involved in the modulation of airway or pulmonary vascular smooth muscle tone. Using in vitro organ bath techniques, atriopeptins were found to induce potent concentration-dependent relaxation of isolated guinea pig trachea, and pulmonary artery with a rank order of potency: atriopeptin III greater than atriopeptin II greater than atriopeptin I. Atriopeptin-induced smooth muscle relaxation was observed to be a direct response since it was not mediated by activation of relaxant VIP receptors, beta-adrenergic receptors, or H2 receptors nor affected by cyclooxygenase inhibition or denuding of the vasculature or trachea of endothelial and epithelial cells. The time course of atriopeptin II-induced relaxation of the pulmonary artery was transient in contrast to the prolonged relaxations on the trachea. The transient relaxant responses of atriopeptin II on pulmonary artery were not due to metabolism of atriopeptin II to atriopeptin I by angiotensin-converting enzyme since pretreatment with captopril did not augment the response. These results seem to indicate that distinct atriopeptin receptors may exist in airway and pulmonary arterial smooth muscle and that activation of these relaxant receptors may play an important role in the regulation of pulmonary vascular and bronchomotor tone.  相似文献   

5.
Natriuretic peptides elaborated by atrial myocytes promote marked renal sodium and water excretion as a mechanism for fluid and electrolyte balance. Recent evidence suggests that atriopeptin (ANP) also targets the non-renal vasculature as a site for enhanced fluid exchange. It remains unclear whether ANP alters microvascular integrity to facilitate the efflux of both plasma and proteins across the endothelial barrier, or if fluid exchange is selectively enhanced. This study evaluated the influence of ANP on macromolecular transport through the direct observation of microvessels in the hamster cheek pouch using fluorescent intravital microscopy. Fluorescein isothiocyanate conjugated to either bovine serum albumin or dextran 150,000 Mw was utilized as a permeability probe. Macromolecular efflux was quantified as fluorochrome clearance. The clearance of fluorescein-conjugated bovine serum albumin (57.94 +/- 7.03) or fluorescein-conjugated dextran 150 (4.09 +/- 1.35) remained unaltered by intravascular injection of 1 microgram/kg ANP. Topical application of 40 ng to cheek pouch microvessels produced similar results. All pouches demonstrated positive leakage response to histamine 2.5 x 10(-6) M, increasing fluorochrome clearance approximately 2- to 11-fold. Bolus injection of 1 microgram/kg ANP reduced mean arterial pressure, increased urine flow from 6.63 +/- 2.59 microliters/min to 8.20 +/- 6.13 microliters/min, and elevated sodium excretion from 1.37 +/- 0.49 microEq/min to 2.54 +/- 0.99 microEq/min. These results suggest that ANP fails to significantly alter the integrity of the protein-transporting channels in the microvascular exchange barrier.  相似文献   

6.
Manipulations of salt and water intake influenced the atriopeptin content in the atria and plasma of rats. Plasma levels of atriopeptin varied in proportion with dietary salt intake. In contrast, cardiac levels of atriopeptin varied inversely with the amount of salt in the diet. Acute stimulation of atriopeptin release can be produced by treatments which elevate atrial pressure, including atrial stretch, volume overloading, water immersion, and vasoconstrictor agents. Vasopressin-stimulated atriopeptin release preferentially depleted right atrial stores. In spite of the initial differences in cardiac stores of atriopeptin in the rats on different diets, there were no major differences in the amount of atriopeptin released in response to vasopressin stimulation. These data suggest that there is a functional excess of cardiac atriopeptin stores. We also examined the atrial and plasma atriopeptin content in the Dahl salt-sensitive and resistant rats to determine whether the development of hypertension in the Dahl sensitive rats is associated with abnormalities in basal or stimulated levels of atriopeptin. The effects of dietary salt intake on basal and stimulated atriopeptin levels in both the Dahl sensitive and resistant rats were similar to those observed in normal rats, suggesting that abnormalities in atriopeptin content do not contribute to the etiology of hypertension in the Dahl salt-sensitive rat.  相似文献   

7.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

8.
Peptides recently isolated from atrial extracts possess potent natriuretic and diuretic activities, which are thought to be due to hemodynamic actions, such as increased glomerular filtration or altered medullary blood flow. A direct tubular site of action cannot be ruled out; therefore we have examined the effect of one of these peptides, atriopeptin III on vasotocin-induced water absorption in the toad urinary bladder. Our results indicate that equimolar doses (10(-12) to 10(-11) M) of atriopeptin III can significantly inhibit vasotocin-induced water reabsorption in vitro and suggest a physiologic role for the cardiac peptides to alter water reabsorption directly at the level of the tubules or collecting ducts, independent of any hemodynamic effects they might also exert in vivo.  相似文献   

9.
The effects of atrial natriuretic factor (ANF) on phosphoinositide hydrolysis were examined in preparations of cultured bovine aortic smooth muscle cells. In homogenates or particulate fractions from cultured bovine aortic smooth muscle cells, ANF and atriopeptin I increased the formation of inositol phosphates and GTPase activity. The effects on inositol phosphates were markedly enhanced with guanosine 5'[gamma-thio]triphosphate. Both atrial peptides also stimulated the formation of diacylglycerol in intact cultured cells. In these experiments, atriopeptin I was about 10-fold more potent than ANF. These studies indicate that atrial peptides have stimulatory effects on phosphoinositide hydrolysis which are mediated through a guanine nucleotide regulatory protein. The greater potency of atriopeptin I on GTPase activity and the accumulation of inositol phosphates suggests that the nonguanylate cyclase-coupled receptor for ANF (ANF-R2) mediates the stimulatory effects of ANF on phosphoinositide hydrolysis through a guanine nucleotide regulatory protein.  相似文献   

10.
The effects of a high-sodium meal on plasma atrial natriuretic peptide (atriopeptin) and renal sodium excretion were studied in eight normal human subjects. As expected, sodium excretion and urine osmolality increased following the meal. Plasma atriopeptin levels did not increase, however, after the high-sodium meal. In a control experiment, consumption of a low-sodium meal by six of the same subjects did not increase either urinary sodium excretion or plasma atriopeptin concentration. We conclude that the natriuresis elicited by a high-salt meal is not mediated by the atrial peptides.  相似文献   

11.
Vasopressin, its 1-deamino analog (dAVP), angiotensin II, and phenylephrine, administered intravenously, increased plasma atriopeptin immunoreactivity in chloral hydrate-anesthetized rats. A continuous one hour infusion of either dAVP or phenylephrine caused a sustained elevation in: a) systemic blood pressure; b) right atrial pressure; c) left ventricular end diastolic pressure; and d) plasma atriopeptin immunoreactivity. While continuous infusion of angiotensin II also produced a sustained elevation in left ventricular end diastolic pressure, the changes in right atrial pressure and plasma atriopeptin were only transient. These data suggest that plasma atriopeptin most closely correlates with right atrial pressure. Consistent with this hypothesis, we found that the release of atriopeptin directly correlated with changes in right atrial pressure in anesthetized, water-immersed rats.  相似文献   

12.
Effects of atriopeptin on particulate guanylate cyclase from rat adrenal   总被引:3,自引:0,他引:3  
Atriopeptin II activated particulate guanylate cyclase 5-10-fold in a concentration- and time-dependent fashion in crude membranes obtained from homogenates of rat adrenal cortex or medulla. Similar effects were observed with other atriopeptin analogs. Soluble guanylate cyclase and adenylate cyclase in these preparations were not activated. Accumulation of cyclic GMP in minces of adrenal cortex or medulla was increased 6-8-fold due to atriopeptin II activation of particulate guanylate cyclase. Several thiol-reactive agents blocked the activation of particulate guanylate cyclase, suggesting that free thiol groups on membrane proteins may be important in atriopeptin receptor-guanylate cyclase coupling.  相似文献   

13.
Low-dose infusions of atriopeptin produce only a modest diuresis and natriuresis. However, these infusions also decrease atrial pressures, a change that has been postulated to elicit an antidiuretic and antinatriuretic reflex from cardiac receptors and thereby to attenuate the direct renal effects of atriopeptin. To determine whether the renal effects of intravenously administered atriopeptin might be attenuated by a cardiorenal reflex, we infused alpha-human atrial natriuretic peptide (alpha-hANP) into cardiac-denervated and sham-operated (normal) conscious dogs. Following a control period, alpha-hANP was infused into each dog at 12.5, 25, or 50 ng.kg-1.min-1 for 1 hr. Infusion of alpha-hANP at 50 ng.kg-1.min-1 produced similar decreases in left atrial pressure in both normal and cardiac-denervated dogs (peak changes, -1.6 +/- 0.8 vs -2.4 +/- 0.9 mm Hg, respectively). Increases in urine flow (peak changes, 0.13 +/- 0.05 vs 0.20 +/- 0.06 ml/min) and sodium excretion (peak changes, 56 +/- 22 vs 70 +/- 11 microEq/min) also were not different between groups. The lower doses of alpha-hANP also elicited renal and hemodynamic responses in the cardiac-denervated dogs that did not differ significantly from those in the normal dogs. These data indicate that the diuresis and natriuresis elicited by intravenously administered alpha-hANP are not attenuated by a cardiorenal reflex in conscious dogs.  相似文献   

14.
Primary rat aortic cells, when treated with arginine vasopressin or depolarizing concentrations of K+, responded to atriopeptin II and 8-bromo-cGMP (8-Br-cGMP) with decreases in intracellular Ca2+ levels. The effects of atriopeptin and 8-Br-cGMP were diminished in cells which had been passaged many times. Low levels of cGMP-dependent protein kinase were present in soluble extracts prepared from the unresponsive cells in later passage compared with extracts from responsive cells. Unresponsive cells, when induced to incorporate cGMP-dependent protein kinase into the cytoplasm using the osmotic lysis procedure of Okada and Rechsteiner (Okada, C. Y., and Rechsteiner, M. (1982) Cell 29, 33-41), responded to atriopeptin and 8-Br-cGMP with reductions in peak Ca2+ levels in response to vasopressin and depolarizing concentrations of K+. Cells which were furnished with affinity-purified antibody to the cGMP-dependent protein kinase after the introduction of the kinase remained unresponsive to the effects of atriopeptin. In addition, antibody furnished to responsive primary cultured cells inhibited the effects of atriopeptin and 8-Br-cGMP on Ca2+ levels. These data suggest that repetitively passaged cultured rat aortic smooth muscle cells lose their responsiveness to cGMP concurrently with the loss of cGMP-dependent protein kinase. Restoration of kinase to the cells results in the restoration of responsiveness to cGMP. Thus cGMP-dependent protein kinase appears to be the mediator of the reduction in Ca2+ levels upon elevation of intracellular cGMP.  相似文献   

15.
Summary The chronotropic and inotropic effects of four atrial peptides (cardiodilatin 1–16, atrial natriuretic factor 8–33 and atriopeptin I and III) on the isolated systemic heart ofOctopus vulgaris were studied.Using a preparation that produces a physiological stroke volume at physiological input pressures, it was found that ANF, atriopeptin I and atriopeptin III exerted both negative chronotropic and inotropic effects. In contrast, cardiodilatin produced a positive inotropic effect.A dose-response curve of ANF is reported, showing a threshold concentration of about 10–12 M.The pharmacological and physiological implications of these results are discussed in relation to some characteristics of the cephalopod systemic heart.  相似文献   

16.
Atriopeptin II, a 23-amino acid synthetic peptide fragment of atrial natriuretic factor, caused an endothelium-independent relaxation of isolated precontracted rings of bovine intrapulmonary artery that was accompanied by the concomitant accumulation of guanosine 3',5'-cyclic monophosphate (cGMP) but not adenosine 3',5'-cyclic monophosphate. In contrast, rings of intrapulmonary vein were unaffected by atriopeptin II whether or not endothelium was present. Whereas methylene blue, an inhibitor of soluble guanylate cyclase, abolishes endothelium-dependent and independent arterial relaxation and cGMP accumulation in response to acetylcholine and glyceryl trinitrate, respectively, methylene blue failed to alter these responses to atriopeptin II. Similarly, the effects of atriopeptin II were unaltered by propranolol, indomethacin, or atropine. These results indicate that relaxation elicited by atriopeptin II may be selective for arterial smooth muscle receptors, does not require endothelial cells, and does not involve the soluble form of guanylate cyclase, although cGMP accumulation is stimulated.  相似文献   

17.
Previous in vitro studies have shown that atrial natriuretic factor inhibits the secretion of aldosterone stimulated by AII, ACTH, and potassium in adrenal cell suspensions. The present study investigated the effects of atriopeptin II on the plasma aldosterone response to a potassium infusion in conscious unrestrained rats in vivo. The infusion of potassium chloride solution increased plasma aldosterone level from 20.4 +/- 3.7 to 168.4 +/- 27.3 ng/dl. The simultaneous administration of atriopeptin II reduced the increase in plasma aldosterone level (16.0 +/- 2.1 to 63.3 +/- 10.4 ng/dl). There was no significant difference in the plasma renin activity, corticosterone, or serum potassium levels between the two groups. These results suggest that atriopeptin II may be important in the regulation of aldosterone secretion.  相似文献   

18.
Several low-molecular-weight peptides that possess potent natriuretic, diuretic, and vascular smooth muscle relaxant activity have been isolated from atrial extracts. Elucidation of their structure indicates that they consist of a 17-membered ring of amino acids formed by a cystine disulfide bond and that they differ only in the composition of the amino and carboxy termini. The 24-amino-acid peptide atriopeptin (AP) III was selected as the reference compound for structure-activity studies. Amino-terminal amino acid extensions on APIII markedly increase the natriuretic-diuretic but not the renal vasodilatory response in anesthetized dogs, which suggests a heterogeneity of AP receptors in renal tubular and vascular tissues. Radioligand (125I-labeled APIII) binding studies with fresh rat kidney slices indicate that the primary renal sites of specific AP binding are in the glomerulus and in the papillary segment of the medulla, thus implicating these structures in the natriuretic-diuretic effect. Data obtained from radioimmunoassay, chromatographic migration, vasorelaxant biological activity, and peptide sequence analysis indicate that Ser-Leu-Arg-Arg-APIII is the major circulating form of low-molecular-weight atrial peptide present in rat plasma. Circulating APs fulfill many of the criteria for involvement in the endocrine regulation of fluid and electrolyte homeostasis.  相似文献   

19.
An increase in atrial pressure has been shown to cause an increase in the concentration of atrial peptides (atriopeptin) in plasma. We therefore hypothesized that a reduction in atrial pressure would decrease the concentration of atriopeptin in plasma. In formulating this hypothesis we assumed that changes in the concentration of other circulating hormones or changes in cardiac nerve activity during hemorrhage would not affect the secretion of atriopeptin. To test the hypothesis, we bled sham-operated conscious dogs at a rate of 0.8 ml.kg-1.min-1 to decrease right and left atrial pressures. Hemorrhage was continued until a total of 30 ml of blood per kilogram body weight had been removed. Identical experiments were performed on conscious cardiac-denervated dogs. The concentration of plasma atriopeptin was decreased in each group of dogs after 10 ml of blood per kilogram of body weight had been removed, but the decrease achieved statistical significance only in the cardiac-denervated dogs. Further hemorrhage, however, produced no further decreases in circulating atriopeptin in either group even though atrial pressures continued to decline as more blood was removed. A comparison of the atriopeptin response to hemorrhage revealed no significant difference between the sham-operated and cardiac-denervated dogs, thus providing no evidence for a specific effect of cardiac nerves on atriopeptin secretion during hemorrhage. Our results demonstrate that the relationship between atrial pressure and plasma atriopeptin that has been observed repeatedly during atrial stretch is not evident during relatively slow, prolonged hemorrhage. There is, however, a small decline in circulating atriopeptin during the initial stage of hemorrhage that could be of biological significance.  相似文献   

20.
D F Soler  R B Harris 《Peptides》1989,10(1):63-68
Atrial dipeptidyl carboxyhydrolase readily converts one atrial natriuretic peptide, atriopeptin II (Ser103-Arg125 peptide), to another, atriopeptin I (Ser103-Ser123 peptide), by selective removal of the C-terminal dipeptide, Phe-Arg. The atrial peptides possess natriuretic, diuretic, smooth muscle relaxant, and cardiodynamic properties and their existence has shown the mammalian heart to be an endocrine organ. After inactivating the bovine atrial enzyme with EDTA, activity is restored by the addition of Co+2, Zn+2 and Mn+2 but not by Cu+2, Mg+2, Ca+2, or Cd+2. The enzyme is thus likely to be a zinc-metallo proteinase. In addition to its dipeptidyl activity, the enzyme also displays tripeptidyl carboxyhydrolase activity with atriopeptin III (Ser103-Try126 peptide) as substrate. The hydrolytic products resulting from tripeptidyl cleavage are atriopeptin I and Phe-Arg-Tyr. However, with [mercaptopropionyl105,(D)Ala107]-atriopeptin III-NH2 peptide (a potent agonist of atriopeptin III) as substrate, the enzyme acts exclusively as a tripeptidyl carboxyhydrolase. To examine the basis for this shift in cleavage point, pentapeptides based on the C-terminal sequence of atriopeptin III were prepared; a C-terminal Tyr or Tyr-NH2 residue is not sufficient to cause the change in cleavage point. The amidated pentapeptide is not a substrate but is a competitive inhibitor of hydrolysis of the corresponding free-acid peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号