首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used site-specific mutagenesis to introduce a termination codon, TGA, into the reading frame for the polyoma virus medium T antigen. We induced this mutation in a region of the polyoma genome in which the overlapping coding regions for the large and medium TE antigens are translated in different reading frames. Therefore, the mutation terminated translation of the medium T antigen, but it caused only a single amino acid substitution in the large T antigen and did not affect the small T antigen. Cells infected by the mutant virus produced normal-size small and large T antigens. The infected cells produced a 28,000-dalton fragment of the 48,000-dalton medium T antigen, whose size and tryptic peptide map were consistent with its being a truncated N-terminal fragment terminating at the new termination codon of the mutant. Immunoprecipitates of mutant-infected cell extracts did not show medium-T-antigen-associated protein kinase activity. The mutant virus replicated normally in mouse 3T6 cells and induced cellular DNA synthesis in resting mouse 3T3 cells, but it failed to transform rat or hamster cells, as judged by focus formation and growth in agar. The mutant complemented a tsA mutant which affects the large T antigen for transformation, implying that the mutant defect for transformation was in the medium T antigen. These results imply that the small T antigen and the large T antigen together are insufficient to cause transformation and support the conclusion that the medium T antigen is essential for cell transformation by polyoma virus.  相似文献   

2.
The early region E1b of adenovirus type 2 (Ad2) codes for two major tumor antigens of 53 and 19 kilodaltons (kd). The adenovirus lp+ locus maps within the 19-kd tumor antigen-coding region (G. Chinnadurai, Cell 33:759-766, 1983). We have now constructed a large-plaque deletion mutant (dl250) of Ad2 that has a specific lesion in the 19-kd tumor antigen-coding region. In contrast to most other Ad2 lp mutants (G. Chinnadurai, Cell 33:759-766, 1983), mutant dl250 is cytocidal (cyt) on infected KB cells, causing extensive cellular destruction. Cells infected with Ad2 wt or most of these other Ad2 lp mutants are rounded and aggregated without cell lysis (cyt+). The cyt phenotype of dl250 resembles the cyt mutants of highly oncogenic Ad12, isolated by Takemori et al. (Virology 36:575-586, 1968). By intertypic complementation analysis, we showed that the Ad12 cyt mutants indeed map within the 19-kd tumor antigen-coding region. The transforming potential of dl250 was assayed on an established rat embryo fibroblast cell line, CREF, and on primary rat embryo fibroblasts and baby rat kidney cells. On all these cells, dl250 induced transformation at greatly reduced frequency compared with wt. The cells transformed by this mutant are defective in anchorage-independent growth on soft agar. Our results suggest that the 19-kd tumor antigen (in conjunction with E1a tumor antigens) may play an important role in the maintenance of cell transformation. Since we have mapped the low-oncogenic or nononcogenic Ad12 cyt mutants within the 19-kd tumor antigen-coding region, our results further indicate that the 19-kd tumor antigen also directly or indirectly plays an important role in tumorigenesis of Ad12. Our results show that the cyt+ locus is an allele of the lp+ locus and that the cyt phenotype may be the result of mutations in specific domains of the 19-kd tumor antigen.  相似文献   

3.
Complementation group II host range mutants of adenovirus type 5 which map in early region 1B (E1B, 4.5 to 11.0 map units) have been shown to be defective for the synthesis of the E1B 58,000-dalton (58K) antigen in infections of HeLa or KB cells (Lassam et al., Cell 18:781-791, 1979) and unable to transform cultured rodent cells (Graham et al., Virology 86:10-21, 1978). In this report we show that DNA extracted from group II mutants hr6 and hr50 can transform rat cells with the same efficiency as wild-type DNA. Furthermore, group II mutant-transformed hamster cells were shown to contain no detectable E1B 58K tumor antigen but were capable of inducing tumors in newborn hamsters. Hamster cell lines 1019-3 and 1019-C3, transformed by hr50 DNA, produced no detectable quantities of either the E1B 58K or 19K antigen but nonetheless exhibited a fully transformed oncogenic phenotype. Our results show that the E1B 58K antigen is not absolutely required for oncogenic transformation and suggest that even cells lacking the 19K protein can be oncogenic.  相似文献   

4.
The adenovirus mutant Ad2ts111 has been previously shown to contain a mutation in the early region 2A gene encoding the single-stranded-DNA-binding protein that results in thermolabile replication of virus DNA and a mutation in early region 1 that causes degradation of intracellular DNA. A recombinant virus, Ad2cyt106, has been constructed which contains the Ad2ts111 early region 1 mutation and the wild-type early region 2A gene from adenovirus 5. This virus, like its parent Ad2ts111, has two temperature-independent phenotypes; first, it has the ability to cause an enhanced and unusual cytopathic effect on the host cell (cytocidal [cyt] phenotype) and second, it induces degradation of cell DNA (DNA degradation [deg] phenotype). The mutation responsible for these phenotypes is a single point mutation in the gene encoding the adenovirus early region 1B (E1B) 19,000-molecular-weight (19K) tumor antigen. This mutation causes a change from a serine to an asparagine in the 20th amino acid from the amino terminus of the protein. Three other mutants that affect the E1B 19K protein function have been examined. The mutants Ad2lp5 and Ad5dl337 have both the cytocidal and DNA degradation phenotypes (cyt deg), whereas Ad2lp3 has only the cytocidal phenotype and does not induce degradation of cell DNA (cyt deg+). Thus, the DNA degradation is not caused by the altered cell morphology. Furthermore, the mutant Ad5dl337 does not make any detectable E1B 19K protein product, suggesting that the absence of E1B 19K protein function is responsible for the mutant phenotypes. A fully functional E1B 19K protein is not absolutely required for lytic growth of adenovirus 2 in HeLa cells, and its involvement in transformation of nonpermissive cells to morphological variants is discussed.  相似文献   

5.
6.
Mutagen treatment of mouse P815 tumor cells produces immunogenic mutants that express new transplantation antigens (tum- antigens) recognized by cytolytic T cells. We found that the gene conferring expression of tum- antigen P91A contains 12 exons, encoding a 60 kd protein lacking a typical N-terminal signal sequence. The sequence shows no significant similarity with sequences in current data bases. A mutation that causes expression of the antigen is located in exon 4; it is the only apparent difference between the normal and the antigenic alleles. A short synthetic peptide corresponding to a region of exon 4 located around this mutation makes P815 cells sensitive to lysis by anti-P91A cytolytic T cells. The mutation creates a strong aggretope enabling the peptide to bind the H-2 Ld molecule. Several secondary tumor cell variants that no longer express tum- antigen P91A were found to carry deletions in the gene.  相似文献   

7.
Summary Thenmr gene is the major negative regulatory gene in the nitrogen control circuit ofNeurospora crassa, which, together with positive regulatory genes, governs the expression of multiple unlinked structural genes of the circuit. Possible functional domains of the NMR protein were investigated by mutational analyses using three different approaches. First, the polymerase chain reaction was used to clone thenmr locus from two conventional mutants, V2M304 and MS5, and the mutant amino acid codons were identified. A single point mutation was shown to be responsible for the mutant phenotype in each of these strains. The V2M304 allele contains a nonsense codon, and in the MS5 allele an aspartate has been substituted for glycine at residue 386. Our second approach studied possible functionally important regions in thenmr gene by the use of site-directed mutagenesis. The region containing the naturally occurring substitution in MS5 appears to be essential for function whereas a region in the N-terminal part of the protein does not seem important for NMR function. Finally, over 50% of the protein coding region was randomly mutagenized and amino acid residues that are essential for function and others that are functionally unimportant were identified.  相似文献   

8.
S P Tong  J S Li  L Vitvitski  A Kay    C Trepo 《Journal of virology》1993,67(9):5651-5655
In two natural HBe-minus hepatitis B virus mutants, expression of HBe protein was abrogated by a nonsense mutation at precore codon 28 and a frameshift mutation at codon 29, respectively. Both mutants contained an additional nucleotide substitution(s) which was found by transfection experiments to be required for efficient packaging of pregenomic RNA. The observed mutational profiles were consistent with the presence of a base-paired region of the pregenome encapsidation signal overlapping the HBe-coding sequence. Results obtained with artificial mutants with significant changes in the primary sequence suggested that base pairing is required but insufficient for efficient pregenome packaging. However, the predicted first four base pairs of the stem are dispensable.  相似文献   

9.
S D Conzen  C A Snay    C N Cole 《Journal of virology》1997,71(6):4536-4543
The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to bind p53 [mut(p53-)Tags] protected against apoptosis without causing transformation. One domain essential for blocking apoptosis by T antigen was mapped to amino acids 525 to 541. This domain has >60% homology with a domain of adenovirus type 5 E1B 19K required to prevent E1A-induced apoptosis. In the context of both wild-type T antigen and mut(p53-)Tags, mutation of two conserved amino acids in this region eliminated T antigen's antiapoptotic activity in REF-52 cells. These data suggest that SV40 T antigen contains a novel functional domain involved in preventing apoptosis independently of inactivation of p53.  相似文献   

10.
11.
We have investigated the function of the 30 kd protein of tobacco mosaic virus (TMV) by a reverse genetics approach. First, a point mutation of TMV Ls1 (a temperature-sensitive mutant defective in cell-to-cell movement), that causes an amino acid substitution in the 30 kd protein, was introduced into the parent strain, TMV L. The generated mutant showed the same phenotype as TMV Ls1, and therefore the one-base substitution in the 30 kd protein gene adequately explains the defectiveness of TMV Ls1. Next, four kinds of frame-shift mutants were constructed, whose mutations are located at three different positions of the 30 kd protein gene. All the frame-shift mutants were replication-competent in protoplasts but none showed infectivity on tobacco plants. From these observations the 30 kd protein was confirmed to be involved in cell-to-cell movement. To clarify that the 30 kd protein is not necessary for replication, two kinds of deletion mutants were constructed; one lacking most of the 30 kd protein gene and the other lacking both the 30 kd and coat protein genes. Both mutants replicated in protoplasts and the former still produced the subgenomic mRNA for the coat protein. These results clearly showed that the 30 kd protein, as well as the coat protein, is dispensable for replication and that no cis-acting element for replication is located in their coding sequences. It is also suggested that the signal for coat protein mRNA synthesis may be located within about 100 nucleotides upstream of the initiation codon of the coat protein gene.  相似文献   

12.
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the beta subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2beta interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2beta-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2beta but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A, E347A,E384A,E385A,E386A) showed negligible binding to eIF2beta. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this DeltaTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2beta interaction plays an essential role in eIF5 function in eukaryotic cells.  相似文献   

13.
P Sarnow  Y S Ho  J Williams  A J Levine 《Cell》1982,28(2):387-394
The adenovirus E1b-58kd tumor antigen has been detected in a physical association with a 54 kilodalton cellular protein in adenovirus-transformed mouse cells. Antibody specific for the E1b-58kd protein coimmunoprecipitates a 54 kd protein from transformed, but not from productively infected, cells. Monoclonal antibody specific for the cellular 54 kd protein coimmunoprecipitates the adenovirus E1b-58kd protein from transformed cell extracts. The same or closely related cellular 54 kd protein, associated with the adenovirus E1b-58kd protein, was present in the SV40 large T antigen-54 kd complex previously detected in SV40-transformed mouse cells. The identity of the 54 kd protein is based on the immunological specificities of the anti-54 kd monoclonal antibodies and partial peptide maps of the 54 kd protein associated with the adenovirus and SV40 tumor antigens. The adenovirus E1b-58kd-54 kd complex, like the SV40 large T antigen-54 kd complex, is heterogeneous in size or mass. While all of the cellular 54 kd protein in the adenovirus-transformed cell extract is found in a complex with the E1b-58kd protein, some of the viral 58 kd antigen is detected in a form not associated with the 54 kd protein. The fact that the adenovirus and Sv40 tumor antigens, both required for transformation, can be found in physical association with the same cellular protein in a transformed cell is a good indication that these two diverse viral proteins share some common mechanisms or functions.  相似文献   

14.
Summary DNA sequencing shows that the mutational alteration resulting from an amber-suppressible replication-defective mutation of F plasmid is a single base pair change from C:G to T:A which yields an amber codon in the coding frame for a 29 kd polypeptide located in the minimal replication region. We thus identified the gene indispensable for F DNA replication as the coding frame which encodes a 29 kb polypeptide. We will designate this gene repA.Abbreviations kb kilobase pairs - bp base pair - kd kilodaltons  相似文献   

15.
16.
We have shown previously that a chemically synthesized adenovirus E1A region 3 peptide of 49 amino acids, protein domain 3 (PD3; residues 140 to 188 of the 289-amino-acid protein), trans activates viral genes in vitro and in vivo. To study structure-function relationships, we synthesized N-terminal deletion and cysteine substitution mutant peptides and tested their activities in a cell microinjection assay. Peptides lacking 1 to 12 N-terminal residues exhibited 5- to 50-fold-reduced molar specific activities, whereas those lacking 16 or 18 residues were inactive. Substitution of each of five PD3 cysteine residues with alanine resulted in substantial losses of activity: mutants in the PD3 N-terminal portion showed 40 to 55% of wild-type activity but required a 20-fold-higher concentration than PD3, whereas those in the C-terminal half were as much less active. These peptide mutant studies suggest the existence of two PD3 functional regions: one, localized in the C-terminal 70 to 75% of the molecule, is essential for trans activation; the other, localized in the N-terminal 25 to 30%, can be overridden to a significant extent at high peptide concentrations.  相似文献   

17.
The 44-amino-acid E5 protein of bovine papillomavirus is a dimeric transmembrane protein that exists in a stable complex with the platelet-derived growth factor (PDGF) β receptor, causing receptor activation and cell transformation. The transmembrane domain of the PDGF β receptor is required for complex formation, but it is not known if the two proteins contact one another directly. Here, we studied a PDGF β receptor mutant containing a leucine-to-isoleucine substitution in its transmembrane domain, which prevents complex formation with the wild-type E5 protein in mouse BaF3 cells and inhibits receptor activation by the E5 protein. We selected E5 mutants containing either a small deletion or multiple substitution mutations that restored binding to the mutant PDGF β receptor, resulting in receptor activation and growth factor independence. These E5 mutants displayed lower activity with PDGF β receptor mutants containing other transmembrane substitutions in the vicinity of the original mutation, and one of them cooperated with a receptor mutant containing a distal mutation in the juxtamembrane domain. These results provide strong genetic evidence that the transmembrane domains of the E5 protein and the PDGF β receptor contact one another directly. They also demonstrate that different mutations in the E5 protein allow it to tolerate the same mutation in the PDGF β receptor transmembrane domain and that a mutation in the E5 protein can allow it to tolerate different mutations in the PDGF β receptor. Thus, the rules governing direct interactions between transmembrane helices are complex and not restricted to local interactions.  相似文献   

18.
STP and Tip Are Essential for Herpesvirus Saimiri Oncogenicity   总被引:7,自引:6,他引:1       下载免费PDF全文
Mutant forms of herpesvirus saimiri (HVS) subgroup C strain 488 with deletions in either STP-C488 or Tip were constructed. The transforming potentials of the HVS mutants were tested in cell culture and in common marmosets. Parental HVS subgroup C strain 488 immortalized common marmoset T lymphocytes in vitro to interleukin-2-independent growth, but neither of the deletion mutants produced such growth transformation. Wild-type HVS produced fatal lymphoma within 19 to 20 days of experimental infection of common marmosets, while HVS ΔSTP-C488 and HVS ΔTip were nononcogenic. Virus was repeatedly isolated from the peripheral blood of marmosets infected with mutant virus for more than 5 months. These results demonstrate that STP-C488 and Tip are not required for replication or persistence, but each is essential for transformation in cell culture and for lymphoma induction in common marmosets.  相似文献   

19.
We have recently shown by deletion mutation analysis that the conserved first 18 N-terminal amino acid residues of rat liver carnitine palmitoyltransferase I (L-CPTI) are essential for malonyl-CoA inhibition and binding (Shi, J., Zhu, H., Arvidson, D. N. , Cregg, J. M., and Woldegiorgis, G. (1998) Biochemistry 37, 11033-11038). To identify specific residue(s) involved in malonyl-CoA binding and inhibition of L-CPTI, we constructed two more deletion mutants, Delta12 and Delta6, and three substitution mutations within the conserved first six amino acid residues. Mutant L-CPTI, lacking either the first six N-terminal amino acid residues or with a change of glutamic acid 3 to alanine, was expressed at steady-state levels similar to wild type and had near wild type catalytic activity. However, malonyl-CoA inhibition of these mutant enzymes was reduced 100-fold, and high affinity malonyl-CoA binding was lost. A mutant L-CPTI with a change of histidine 5 to alanine caused only partial loss of malonyl-CoA inhibition, whereas a mutant L-CPTI with a change of glutamine 6 to alanine had wild type properties. These results demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl-CoA binding and inhibition of L-CPTI by malonyl-CoA but are not required for catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号