首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The alcR positive control gene is necessary for the expression of both alcA (coding for alcohol dehydro-genase ADH I.) and aldA (coding for aldehyde dehydro-genase, AldDH) in Aspergillus nidulans. Using a cloned alcR probe and Northern blots analysis we show that: (1)alcR itself is inducible; (2)alcR inducibility depends on the expression of the alcR gene Itself; and (3) alcR is subject to carbon catabolite repression and its expression Is controlled by the negatively acting creA wide specificity gene. The repression of alcR is sufficient to explain the cariaon catabolite repression of ADH I and AldDH.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The amiE gene encodes an aliphatic amidase capable of converting fluoroacetamide to the toxic compound fluoroacetate and is one of many genes whose expression is subject to catabolite repression control in Pseudomonas aeruginosa. The protein product of the crc gene, Crc, is required for repression of amiE and most other genes subject to catabolite repression control in this bacterium. When grown in a carbon source such as succinate, wild-type P. aeruginosa is insensitive to fluoroacetamide (due to repression of amiE expression). In contrast, mutants harboring the crc-10 null allele cannot grow in the presence of fluoroacetamide (due to lack of repression of amiE). Selection for succinate-dependent, fluoroacetamide-resistant derivatives of the crc-10 mutant yielded three independent pseudorevertants containing suppressors that restored a degree of catabolite repression control. Synthesis of Crc protein was not reestablished in these pseudorevertants. All three suppressors of crc-10 were extragenic, and all three also suppressed a Delta crc::tetA allele. In each of the three pseudorevertants, catabolite repression control of amidase expression was restored. Catabolite repression control of mannitol dehydrogenase production was also restored in two of the three isolates. None of the suppressors restored repression of glucose-6-phosphate dehydrogenase or pyocyanin production.  相似文献   

11.
12.
13.
14.
ALTHOUGH the presence of alcohol dehydrogenase (ADH) in cerebral tissue has been established1, a physiological role for such a brain ethanol-oxidizing system has been unclear. The brain may be more biochemically adaptive than was once thought2; thus, it seemed possible that brain ADH may be substrate-induced. We now report that significant elevations of brain ADH activity occur in alcohol-imbibing rats; no changes from control values were found in liver ADH, liver aldehyde dehydrogenase (AldDH), or brain AldDH activities.  相似文献   

15.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

16.
The bamM gene from Bacillus megaterium DSM319 encoding an extracellular beta-amylase was isolated and completely sequenced. Chromosomal inactivation by deletion mutagenesis resulted in total loss of amylolytic activity, indicative of a single starch-degrading enzyme. Functional characterization of the expressed protein revealed a maltogenic enzyme exhibiting optimal activities at pH 7.5 and 50 degrees C. Amylase expression is subject to catabolite repression by glucose. A putative cis-acting catabolite-responsive element (CRE) was identified; it is located within the bamM coding region, matching the position of the predicted signal peptide processing site. Base substitutions introduced by site-directed mutagenesis within the bamM-CRE--retaining unchanged the amino acid sequence--provoked a remarkable relief from carbon catabolite repression (CCR), thereby proving functionality of the CRE for CCR.  相似文献   

17.
18.
19.
用20种不同的碳源(包括单一碳源和混合碳源)分别培养瑞氏木霉(Trichoderma reesei)QM9414。通过一系列Northern杂交分析检测瑞氏木霉木糖还原酶(XR),木糖醇脱氢酶(XDH)以及转醛醇酶(TAL)mRNA的表达情况。实验结果证实,槐糖和木二糖是xr和xdh表达的强诱导物,阿拉伯糖和乳糖也有较强的诱导作用。葡萄糖在培养基中的存在阻遏该二基因的表达。当葡萄糖耗尽以后,培养基中不存在任何诱导物的情况下,xr和xdh以一定的基础水平进行转录。相比较,tal基因在每种碳源上都是强表达。  相似文献   

20.
The regulation of the syntheses of two arabinan-degrading extracellular enzymes and several intracellular l-arabinose catabolic enzymes was examined in wild-type and carbon catabolite derepressed mutants of Aspergillus nidulans. α-l-Arabinofuranosidase B, endoarabinase, l-arabinose reductase, l-arabitol dehydrogenase, xylitol dehydrogenase, and l-xylulose reductase were all inducible to varying degrees by l-arabinose and l-arabitol and subject to carbon catabolite repression by d-glucose. With the exception of l-xylulose reductase, all were clearly under the control of creA, a negative-acting wide domain regulatory gene mediating carbon catabolite repression. Measurements of intracellular enzyme activities and of intracellular concentrations of arabitol and xylitol in mycelia grown on d-glucose in the presence of inducer indicated that carbon catabolite repression diminishes, but does not prevent uptake of inducer. Mutations in creA resulted in an apparently, in some instances very marked, elevated inducibility, perhaps reflecting an element of “self” catabolite repression by the inducing substrate. creA mutations also resulted in carbon catabolite derepression to varying degrees. The regulatory effects of a mutation in creB and in creC, two genes whose roles are unclear, but likely to be indirect, were, when observable, more modest. As with previous data showing the effect of creA mutations on structural gene expression, there were striking instances of phenotypic variation amongst creA mutant alleles and this variation followed no discernible pattern, i.e. it was non-hierarchical. This further supports molecular data obtained elsewhere, indicating a direct role for creA in regulating structural gene expression, and extends the range of activities under creA control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号