首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.  相似文献   

2.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

3.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types, particularly of hemopoietic origin, store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. However, little is known about the downstream consequences of CRAC channel activation. Here, we report that Ca2+ entry through CRAC channels stimulates arachidonic acid production, whereas Ca2+ release from the stores is ineffective even though the latter evokes a robust intracellular Ca2+ signal. We find that arachidonic acid released by Ca2+ entering through CRAC channels is used to synthesize the potent paracrine proinflammatory signal leukotriene C4 (LTC4). Both pharmacological inhibitors of CRAC channels and mitochondrial depolarization, which impairs CRAC channel activity, suppress arachidonic acid release and LTC4 secretion. Thus, arachidonic acid release is preferentially stimulated by elevated subplasmalemmal Ca2+ levels due to open CRAC channels, suggesting that the enzyme is located close to the CRAC channels. Our results also identify a novel role for CRAC channels, namely the activation of a downstream signal transduction pathway resulting in the secretion of LTC4. Finally, mitochondria are key determinants of the generation of both intracellular (arachidonic acid) and paracrine (LTC4) signals through their effects on CRAC channel activity.  相似文献   

4.
Ca2+ entry through store-operated Ca2+ channels drives the production of the pro-inflammatory molecule leukotriene C4 (LTC4) from mast cells through a pathway involving Ca2+-dependent protein kinase C, mitogen-activated protein kinases ERK1/2, phospholipase A2, and 5-lipoxygenase. Here we examine whether local Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane stimulates this signaling pathway. Manipulating the amplitude and spatial extent of Ca2+ entry by altering chemical and electrical gradients for Ca2+ influx or changing the Ca2+ buffering of the cytoplasm all impacted on protein kinase C and ERK activation, generation of arachidonic acid and LTC4 secretion, with little change in the bulk cytoplasmic Ca2+ rise. Similar bulk cytoplasmic Ca2+ concentrations were achieved when CRAC channels were activated in 0.25 mm external Ca2+ versus 2 mm Ca2+ and 100 nm La3+, an inhibitor of CRAC channels. However, despite similar bulk cytoplasmic Ca2+, protein kinase C activation and LTC4 secretion were larger in 2 mm Ca2+ and La3+ than in 0.25 mm Ca2+, consistent with the central involvement of a subplasmalemmal Ca2+ rise. The nonreceptor tyrosine kinase Syk coupled CRAC channel opening to protein kinase C and ERK activation. Recombinant TRPC3 channels also activated protein kinase C, suggesting that subplasmalemmal Ca2+ rather than a microdomain exclusive to CRAC channels is the trigger. Hence a subplasmalemmal Ca2+ increase in mast cells is highly versatile in that it triggers cytoplasmic responses through generation of intracellular messengers as well as long distance changes through increased secretion of paracrine signals.  相似文献   

5.
6.
Although the crucial role of Ca(2+) influx in lymphocyte activation has been well documented, little is known about the properties or expression levels of Ca(2+) channels in normal human T lymphocytes. The use of Na(+) as the permeant ion in divalent-free solution permitted Ca(2+) release-activated Ca(2+) (CRAC) channel activation, kinetic properties, and functional expression levels to be investigated with single channel resolution in resting and phytohemagglutinin (PHA)-activated human T cells. Passive Ca(2+) store depletion resulted in the opening of 41-pS CRAC channels characterized by high open probabilities, voltage-dependent block by extracellular Ca(2+) in the micromolar range, selective Ca(2+) permeation in the millimolar range, and inactivation that depended upon intracellular Mg(2+) ions. The number of CRAC channels per cell increased greatly from approximately 15 in resting T cells to approximately 140 in activated T cells. Treatment with the phorbol ester PMA also increased CRAC channel expression to approximately 60 channels per cell, whereas the immunosuppressive drug cyclosporin A (1 microM) suppressed the PHA-induced increase in functional channel expression. Capacitative Ca(2+) influx induced by thapsigargin was also significantly enhanced in activated T cells. We conclude that a surprisingly low number of CRAC channels are sufficient to mediate Ca(2+) influx in human resting T cells, and that the expression of CRAC channels increases approximately 10-fold during activation, resulting in enhanced Ca(2+) signaling.  相似文献   

7.
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.  相似文献   

8.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

9.
Agonist-receptor interactions at the plasma membrane often lead to activation of store-operated channels (SOCs) in the plasma membrane, allowing for sustained Ca(2+) influx. While Ca(2+) influx is important for many biological processes, little is known about the types of SOCs, the nature of the depletion signal, or how the SOCs are activated. We recently showed that in addition to the Ca(2+) release-activated Ca(2+) (CRAC) channel, both Jurkat T cells and human peripheral blood mononuclear cells express novel store-operated nonselective cation channels that we termed Ca(2+) release-activated nonselective cation (CRANC) channels. Here we demonstrate that activation of both CRAC and CRANC channels is accelerated by a soluble Ca(2+) influx factor (CIF). In addition, CRANC channels in inside-out plasma membrane patches are directly activated upon exposure of their cytoplasmic side to highly purified CIF preparations. Furthermore, CRANC channels are also directly activated by diacylglycerol. These results strongly suggest that the Ca(2+) store-depletion signal is a diffusible molecule and that at least some SOCs may have dual activation mechanisms.  相似文献   

10.
11.
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.  相似文献   

12.
Chen XF  Li CX  Wang PY  Li M  Wang WC 《Biophysical chemistry》2008,136(2-3):87-95
A mathematical model is proposed to illustrate the activation of STIM1 (stromal interaction molecule 1) protein, the assembly and activation of calcium-release activated calcium (CRAC) channels in T cells. In combination with De Young-Keizer-Li-Rinzel model, we successfully reproduce a sustained Ca(2+) oscillation in cytoplasm. Our results reveal that Ca(2+) oscillation dynamics in cytoplasm can be significantly affected by the way how the Orai1 CRAC channel are assembled and activated. A low sustained Ca(2+) influx is observed through the CRAC channels across the plasma membrane. In particular, our model shows that a tetrameric channel complex can effectively regulate the total quantity of the channels and the ratio of the active channels to the total channels, and a period of Ca(2+) oscillation about 29 s is in agreement with published experimental data. The bifurcation analyses illustrate the different dynamic properties between our mixed Ca(2+) feedback model and the single positive or negative feedback models.  相似文献   

13.
Hepatocytes are highly polarised epithelial cells that mediate a large number of metabolic pathways, the transcellular movement of numerous ions and metabolites, and the secretion of proteins from both basal and canalicular membrane regions. Hormone-induced changes in the concentration of intracellular Ca2+ play a central role in regulating these functions. Store-operated Ca2+ channels (SOCs) and other Ca2+-permeable channels in the plasma membrane which are activated by hormones are essential for regulating the amount of Ca2+ in the hepatocyte in order to allow these Ca2+ signalling processes to occur. However, the properties of hormone-activated Ca2+ channels in hepatocytes and in other epithelial cells are not well defined. In this study, we have investigated SOCs in cultured rat hepatocytes by patch-clamp recording using IP3 and hormones as activators. We show that IP3 activates a single type of SOC, which, on the basis of its high selectivity for Ca2+ over Na+, inhibition by La3+ and 2-aminoethyl diphenylborate (2-APB), and the time course of fast inactivation, is very similar to CRAC channel in mast cells and lymphocytes. Moreover, a current (ISOC) with properties identical to those of the IP3-activated current can be activated by physiological concentrations of ATP and vasopressin. It is concluded that SOCs with properties similar to those of CRAC channel are present in hepatocytes, highly differentiated primary cells, and these channels can be activated by hormones under conditions close to physiological.  相似文献   

14.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

15.
16.
In nonexcitable cells, Ca(2+) entry is mediated predominantly through the store depletion-dependent Ca(2+) channels called store-operated Ca(2+) (SOC) or Ca(2+) release-activated Ca(2+) channels. YM-58483, a pyrazole derivative, inhibited an anti-CD3 mAb-induced sustained Ca(2+) influx in acute T cell leukemia, Jurkat cells. But it did not affect an anti-CD3 mAb-induced transient intracellular Ca(2+) increase in Ca(2+)-free medium, nor anti-CD3 mAb-induced phosphorylation of phospholipase Cgamma1. It was suggested that YM-58483 inhibited Ca(2+) influx through SOC channels without affecting the TCR signal transduction cascade. Furthermore, YM-58483 inhibited thapsigargin-induced sustained Ca(2+) influx with an IC(50) value of 100 nM without affecting membrane potential. YM-58483 inhibited by 30-fold the Ca(2+) influx through SOC channels compared with voltage-operated Ca(2+) channels, while econazole inhibited both SOC channels and voltage-operated Ca(2+) channels with an equivalent range of IC(50) values. YM-58483 potently inhibited IL-2 production and NF-AT-driven promoter activity, but not AP-1-driven promoter activity in Jurkat cells. Moreover, this compound inhibited delayed-type hypersensitivity in mice with an ED(50) of 1.1 mg/kg. Therefore, we concluded that YM-58483 was a novel store-operated Ca(2+) entry blocker and a potent immunomodulator, and could be useful for the treatment of autoimmune diseases and chronic inflammation. Furthermore, YM-58483 would be a candidate for the study of capacitative Ca(2+) entry mechanisms through SOC/CRAC channels and for identification of putative Ca(2+) channel genes.  相似文献   

17.
The activation of Ca(2+) entry through store-operated channels by agonists that deplete Ca(2+) from the endoplasmic reticulum (ER) is an ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past 20 years. In T lymphocytes, store-operated Ca(2+)-release-activated Ca(2+) (CRAC) channels constitute the sole pathway for Ca(2+) entry following antigen-receptor engagement, and their function is essential for driving the program of gene expression that underlies T-cell activation by antigen. The first molecular components of this pathway have recently been identified: stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and Orai1, a pore-forming subunit of the CRAC channel. Recent work shows that CRAC channels are activated in a complex fashion that involves the co-clustering of STIM1 in junctional ER directly opposite Orai1 in the plasma membrane. These studies reveal an abundance of sites where Ca(2+) signaling might be controlled to modulate the activity of T cells during the immune response.  相似文献   

18.
Lymphocyte signaling and activation leads to the influx of extracellular Ca(2+) via the activation of Ca(2+) release activated Ca(2+) (CRAC) channels in the plasma membrane. Activation of CRAC channels occurs following emptying of the endoplasmic reticulum intracellular Ca(2+) stores. One model to explain the coupling of store-emptying to CRAC activation is the secretion-like conformational coupling model. This model proposes that store depletion increases junctions between the endoplasmic reticulum and the plasma membrane in a manner that could be regulated by the cortical actin cytoskeleton. Here, we show that stabilization or depolymerization of the actin cytoskeleton failed to affect CRAC activation. We therefore conclude that rearrangement of the actin cytoskeleton is dispensable for store-operated Ca(2+) entry in T-cells.  相似文献   

19.
S C Chow  M Jondal 《Cell calcium》1990,11(10):641-646
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol.  相似文献   

20.
Prakriya M  Lewis RS 《Cell calcium》2003,33(5-6):311-321
The Ca2+ release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel that is expressed in T lymphocytes, mast cells, and other hematopoietic cells. In T cells, CRAC channels are essential for generating the prolonged intracellular Ca2+ ([Ca2+](i)) elevation required for the expression of T-cell activation genes. Here we review recent work addressing CRAC channel regulation, pore properties, and the search for CRAC channel genes. Of the current models for CRAC current (I(CRAC)) activation, several new studies argue against a conformational coupling mechanism in which IP(3) receptors communicate store depletion to CRAC channels through direct physical interaction. The study of CRAC channels has been complicated by the fact that they lose activity in the absence of extracellular Ca2+. Attempts to maintain current size by removing intracellular Mg2+ have been found to unmask Mg2+-inhibited cation (MIC/MagNuM/TRPM7) channels, which have been mistaken in several studies for the CRAC channel. Recent studies under conditions that prevent MIC activation reveal that CRAC channels use high-affinity binding of Ca2+ in the pore to achieve high Ca2+ selectivity but have a surprisingly low conductance for both Ca2+ (approximately 10fS) and Na+ (approximately 0.2pS). Pore properties provide a unique fingerprint that provides a stringent test for potential CRAC channel genes and suggest models for the ion selectivity mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号