首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-Methylisocitrate (3-hydroxy-1,2,3-butanetricarboxylate) is a potent inhibitor, competitive with isocitrate (1-hydroxy-1,2,3-propanetricarboxylate), of the TPN-linked isocitrate dehydrogenase from bovine heart and rat liver; it does not inhibit the DPN-specific enzyme from these tissues. In the presence of magnesium ion, values of Kis for DL-alpha-methylisocitrate for purified bovine heart enzyme, rat liver cytosol, and rat liver mitochondrial extract were in the range of 0.1 muM to 0.3 muM. This compared to values of apparent Km for DL-isocitrate for the same tissue preparations of 14 muM to 20 muM. One of the DL isomer pairs of alpha-methylisocitrate was inactive; the observations suggest that it is threo-alpha-methylisocitrate which inhibits TPN-linked isocitrate dehydrogenase. A method of synthesis of DL-threo-alpha-methylisocitric lactone (2-methyl-5-oxo-2,3-furandicarboxylic acid) from dimethyl trans-epoxymethylsuccinate and dimethylmalonate is described.  相似文献   

2.
Glutamate dehydrogenase (EC. 1.4.1.3) has been purified more than 9,000 times from human placental alcoholic subfractions as a homogenous protein of 55,155 daltons (subunit molecular weight). Kinetic constants for the reverse reaction (reductive amination of α-ketoglutarate) have been shown to be similar to those of the bovine liver enzyme, while the kinetic constants for the forward reaction were markedly different as well as some regulatory properties (lack of activation by ADP in the reverse reaction). The amino acid composition differs from the bovine liver enzyme composition. Furthermore, the tryptic peptide patterns of the placental enzyme and the human liver enzyme have been compared. Besides the low specific activity of this enzyme, the results indicate that human placental glutamate dehydrogenase is closely related to other mammalian glutamate dehydrogenases.  相似文献   

3.
3-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme with an absolute requirement of phosphatidylcholine for enzymatic activity. Purification of the enzyme to homogeneity from bovine heart mitochondria was described more than a decade ago [H. G. Bock and S. Fleischer (1975) J. Biol. Chem. 250, 5774-5781]. We have modified the purification procedure so that it is faster, the yield has been improved, and the specific activity is greater by approximately 50%. The updated procedure has also been applied to isolate the enzyme from rat liver mitochondria. Characteristics of the enzyme from bovine heart and rat liver mitochondria have been compared and found to be similar with respect to: (1) purification characteristics; (2) amino acid composition; (3) pH optimum for enzymatic activity; (4) kinetic characteristics; (5) molecular weight as determined by sedimentation equilibrium in guanidine hydrochloride; (6) peptide maps; (7) immunological cross-reactivity. These studies show that 3-hydroxybutyrate dehydrogenase from bovine heart and rat liver mitochondria, though similar, are not identical.  相似文献   

4.
Lysine-ketoglutarate reductase was purified 675-fold from bovine liver mitochondria. Product inhibition studies gave results similar to those reported for this enzyme extracted from other sources. Inhibition studies with L-citrulline exhibited mixed inhibition patterns. No inhibition of the partially-purified enzyme by ammonium salts was detected; in contrast, marked inhibition of the enzyme by ammonium was apparently observed in crude liver homogenates. This was probably due to depletion of NADPH and/or 2-oxoglutarate in the assay mixture as a result of conversion of ammonium to glutamate by glutamate dehydrogenase. A similar explanation could account for the high levels of lysine observed in humans with urea cycle disorders.  相似文献   

5.
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons.  相似文献   

6.
Besides the synthesis of urea, ammonia detoxication at high concentrations can also be effected through enzyme reactions involved in glutamic acid metabolism. These mechanisms are also operative in extrahepatic tissues. Hyperammonemia is also found in the animal model of the portacaval shunt (PCS) rat. This model was chosen to study the activities of glutamate dehydrogenase, glutamine synthetase and glutaminase I in liver, brain and kidney 10, 20 and 30 days after PCS. In brain and kidney ammonia is detoxified mainly by the glutamate dehydrogenase and glutamine synthetase reactions whereas in the liver these enzyme reactions play a minor role.  相似文献   

7.
Competitive inhibition of glutamate dehydrogenase reaction   总被引:1,自引:0,他引:1  
Choudhury R  Punekar NS 《FEBS letters》2007,581(14):2733-2736
Irrespective of their pyridine nucleotide specificity, all glutamate dehydrogenases share a common chemical mechanism that involves an enzyme bound 'iminoglutarate' intermediate. Three compounds, structurally related to this intermediate, were tested for the inhibition of purified NADP-glutamate dehydrogenases from two Aspergilli, as also the bovine liver NAD(P)-glutamate dehydrogenase. 2-Methyleneglutarate, closely resembling iminoglutarate, was a potent competitive inhibitor of the glutamate dehydrogenase reaction. This is the first report of a non-aromatic structure with a better glutamate dehydrogenase inhibitory potency than aryl carboxylic acids such as isophthalate. A suitably located 2-methylene group to mimic the iminium ion could be exploited to design inhibitors of other amino acid dehydrogenases.  相似文献   

8.
In previous studies it was found that: (a) aspartate aminotransferase increases the aspartate dehydrogenase activity of glutamate dehydrogenase; (b) the pyridoxamine-P form of this aminotransferase can form an enzyme-enzyme complex with glutamate dehydrogenase; and (c) the pyridoxamine-P form can be dehydrogenated to the pyridoxal-P form by glutamate dehydrogenase. It was therefore concluded (Fahien, L.A., and Smith, S.E. (1974) J. Biol. Chem 249, 2696-2703) that in the aspartate dehydrogenase reaction, aspartate converts the aminotransferase into the pyridoxamine-P form which is then dehydrogenated by glutamate dehydrogenase. The present results support this mechanism and essentially exclude the possibility that aspartate actually reacts with glutamate dehydrogenase and the aminotransferase is an allosteric activator. Indeed, it was found that aspartate is actually an activator of the reaction between glutamate dehydrogenase and the pyridoxamine-P form of the aminotransferase. Aspartate also markedly activated the alanine dehydrogenase reaction catalyzed by glutamate dehydrogenase plus alanine aminotransferase and the ornithine dehydrogenase reaction catalyzed by ornithine aminotransferase plus glutamate dehydrogenase. In these latter two reactions, there is no significant conversion of aspartate to oxalecetate and other compounds tested (including oxalacetate) would not substitute for aspartate. Thus aspartate is apparently bound to glutamate dehydrogenase and this increases the reactivity of this enzyme with the pyridoxamine-P form of aminotransferases. This could be of physiological importance because aspartate enables the aspartate and ornithine dehydrogenase reactions to be catalyzed almost as rapidly by complexes between glutamate dehydrogenase and the appropriate mitochondrial aminotransferase in the absence of alpha-ketoglutarate as they are in the presence of this substrate. Furthermore, in the presence of aspartate, alpha-ketoglutarate can have little or no affect on these reactions. Consequently, in the mitochondria of some organs these reactions could be catalyzed exclusively by enzyme-enzyme complexes even in the presence of alpha-ketoglutarate. Rat liver glutamate dehydrogenase is essentially as active as thebovine liver enzyme with aminotransferases. Since the rat liver enzyme does not polymerize, this unambiguously demonstrates that monomeric forms of glutamate dehydrogenase can react with aminotransferases.  相似文献   

9.
—A method is described for the preparation of glutamate dehydrogenase in a highly purified form from rat brain. Only one protein band was detected when the enzyme was subjected to electrophoresis on SDS polyacrylamide gels. The rat brain enzyme was essentially identical to the rat liver enzyme with respect to electrophoresis on SDS polyacrylamide gels, immunochemical properties and most kinetic parameters. However, the brain enzyme was much less reactive with glutamate, was more sensitive to inhibition by haloperidol, and was considerably more stable than the liver enzyme.  相似文献   

10.
1. The properties of rat liver and bovine heart R-3-hydroxybutyrate dehydrogenase (BDH) have been extensively studied in the past 20 years, but little is known concerning the biogenesis and the regulation of this dehydrogenase over different species. 2. In addition, controversial results were often reported concerning the activity, the level and the subcellular location of this enzyme in ruminants. 3. BDH activity found in liver and kidney mitochondria from ruminants (cow and sheep) is low, while it is much higher in rat. 4. However, the enzyme activity is detected in microsomes and in cytosol of liver and of kidney cells from ruminants. These activities are not correlated to ketonaemia level. 5. Although low BDH activity is detected in liver mitochondria from ruminants; the bovine liver BDH gene seems to be translated since BDH can be immunodetected by using an antiserum raised against bovine heart BDH. 6. Beside this, the good cross-reactivity between heart BDH and liver BDH suggests their high level of homology in ruminants.  相似文献   

11.
The cytosolic precursor for the mitochondrial glutamate dehydrogenase of rat liver was synthesized in a cell-free reticulocyte lysate using messenger RNA from rat liver. To check whether this precursor had enzymatic activity, a highly sensitive fluorimetric method, which can measure picogram quantities of enzyme, was used together with competitive dissociation of the precursor from an immunoprecipitate with inactive glutamate dehydrogenase. Glutamate dehydrogenase activity, corresponding to that estimated from incorporation of [35S]-methionine, was detected in the precursor. The significance of this finding is discussed.  相似文献   

12.
Adult male and female Haemonchus contortus were homogenized and subjected to differential centrifugation. The crude, high-speed, supernatant fraction contained more than 95% of the glutamate dehydrogenase activity. The enzyme was purified through use of DEAE-cellulose columns and sucrose density gradient centrifugation. The enzyme from both crude and purified preparations was detected as a single band of activity following starch or polyacrylamide-gel electrophoresis. The Haemonchus enzyme was compared with ovine and bovine liver glutamate dehydrogenases. The three enzymes were similar in molecular size, Michaelis constants, and pH optimums but differed in electrophoretic mobility in polyacrylamide-gels, activity with NADP as coenzyme, and effect of AMP and ADP on activity. Sheep anti-Haemonchus glutamate dehydrogenase serum inhibited Haemonchus glutamate dehydrogenase, but did not inhibit the ovine or bovine enzymes.  相似文献   

13.
The structure of bovine liver glutamate dehydrogenase was examined with 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (TEMPO I) and 4-((4-(chloromercurio)benzoyl) amino)-2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO II). ESR spectra from TEMPO I show that enzyme structure in the vicinity of this spin label was not distorted during immobilization to a Sepharose support. Deactivation studies with pyridoxal 5'-phosphate indicate that immobilization did not expose additional binding sites to TEMPO I. Spectra from TEMPO II reveal that immobilization profoundly altered conformational change induced by alpha-ketoglutarate and suppressed that induced by GTP and NADPH. This structural investigation provides insight into the altered kinetic properties of Sepharose-immobilized glutamate dehydrogenase and suggests a fundamental difference between monomers and allosteric oligomers in their structural response to immobilization.  相似文献   

14.
Quinolinate inhibits several aminotransferases (ornithine, alanine, and aspartate). However, it is considerably more potent as an inhibitor of liver and heart cytoplasmic aspartate aminotransferase. It is a much less potent inhibitor of mitochondrial aspartate aminotransferases. Quinolinate is bound to the active site of cytoplasmic aspartate aminotransferase. It has a much greater affinity for the pyridoximine-P than the pyridoxal-P form of the enzyme. According to kinetic results, the inhibition or dissociation constant of quinolinate is 0.2 and 20 mm, respectively, for the pyridoxamine-P and the pyridoxal-P forms of the enzyme. Since quinolinate is mainly bound to the pyridoxamine-P form: (a) it is a potent competitive inhibitor of α-ketoglutarate but has little effect when α-ketoglutarate is saturating even if the level of aspartate is low; (b) it decreases the effect of α-ketoglutarate on the absorption spectrum of the pyridoxamine-P form; and (c) it enhances the effect of glutamate on the absorption spectrum of the pyridoxal-P form. Quinolinate is also apparently bound to the apoenzyme since it inhibits reconstitution by either pyridoxamine-P or pyridoxal-P. Since quinolinate is a competitive inhibitor of α-ketoglutarate, it is possible that part of the inhibitory effect of quinolinate on hepatic gluconeogenesis could result from quinolinate inhibiting the conversion of aspartate to oxalacetate by the cytoplasmic aspartate aminotransferase. Quinolinate has no effect on either rat or bovine liver glutamate dehydrogenase or on kidney glutamate dehydrogenase.  相似文献   

15.
1. Glutamate dehydrogenase and malate dehydrogenase solubilized from liver microsomes were able to rebind to microsomal vesicles while the corresponding dehydrogenases extracted from mitochondria showed no affinity for microsomes. 2. Competition was noticed between microsomal glutamate dehydrogenase and microsomal malate dehydrogenase in the binding to microsomal membranes. Mitochondrial malate dehydrogenase or bovine serum albumin did not inhibit the binding of microsomal glutamate dehydrogenase to microsomes. 3. Binding of microsomal glutamate dehydrogenase to microsomal membranes decreased when microsomes was preincubated with trypsin. 4. Rough microsomal glutamate dehydrogenase was more efficiently bound to rough microsomes than smooth microsomes. Conversely, smooth microsomal glutamate dehydrogenase had higher affinity for smooth microsomes than for rough microsomes. 5. A difference was noticed among the glutamate dehydrogenase isolated from rough and smooth microsomes, and from mitochondria, which suggested the possibility of minor post-translational modification of enzyme molecules in the transport from the site of synthesis to mitochondria.  相似文献   

16.
Substrate regulation patterns were changed by covalent binding of bovine liver glutamate dehydrogenase via primary amino groups to CNBr- and CH-activated Sepharose 4B. Lineweaver-Burk plots show that the NAD activation region changed from being abrupt to elongated when the enzyme was immobilized to either support. The elongated region contains two inflection points and resembles substrate activation of several other allosteric oligomers. Glutamate induced varying degrees of abrupt activation in immobilized glutamate dehydrogenase and inhibited the native enzyme. This activation is characterized by an activation threshold, an increase in the apparent dissociation constant, and a correlation between the apparent rate constant and the degree of activation. These three features characterize other glutamate dehydrogenase systems.  相似文献   

17.
The very high affinity for GTP of glutamate dehydrogenase was used to purify this enzyme by affinity chromatography. After periodic acid oxidation, GTP was covalently bound to an activated Sepharose. When crude mitochondrial extracts were applied on a column of this GTP-Sepharose, glutamate dehydrogenase was retained with very few other proteins. Glutamate dehydrogenase from rat liver was eluted with a KCl gradient with only one contaminating protein. From a pig heart mitochondrial extract the enzyme was purified 300-fold in one step. A chromatography on hydroxyapatite was sufficient to achieve the purification. This very simple technique avoids the long and troublesome crystallization steps generally involved in glutamate dehydrogenase purification.  相似文献   

18.
J Vińa  R Hems    H A Krebs 《The Biochemical journal》1978,170(3):711-713
1. Kinetic aspects of the reaction between crystalline bovine liver glutamate dehydrogenase and formiminoglutamate were investigated to establish the conditions under which the latter may interfere with the assay of glutamate by using glutamate dehydrogenase and to explain why formiminoglutamate accumulates in vivo after histidine loading, although it can react with glutamate dehydrogenase. The Km and Vmax. values were compared with those of the enzyme reacting with glutamate. At pH 7.4 Km for formiminoglutamate was much higher and Vmax. much lower than the values for glutamate. 2. The equilibrium constant at pH 7.0 was 0.017 micrometer with formiminoglutamate, i.e. about one two-hundredths that with glutamate. 3. In vivo the interaction between glutamate dehydrogenase and formiminoglutamate is minimal even when the concentration of the latter in the liver is greatly raised, as in cobalamine or folate deficiency after histidine loading. 4. At pH 9.3, i.e. under the conditions for the assay of glutamate by glutamate dehydrogenase, formiminoglutamate reacts readily with the enzyme.  相似文献   

19.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

20.
1. pH5 enzyme from non-lactating bovine mammary gland was found to contain potent inhibitors of protein synthesis in the rat liver cell-free system. These inhibitors affect (a) formation of aminoacyl-tRNA where tRNA represents transfer RNA, (b) transfer of labelled amino acids from rat liver amino[(14)C]acyl-tRNA to protein in rat liver polyribosomes, and (c) incorporation of (14)C-labelled amino acids into peptide by rat liver polyribosomes supplemented with rat liver pH5 enzyme. 2. Increasing amounts of pH5 enzyme from bovine mammary gland progressively inhibited the incorporation of labelled amino acids into protein by a complete incorporating system from rat liver. Approx. 80% inhibition was observed at a concentration of 2mg. of protein of pH5 enzyme from bovine mammary gland. The inhibitory effect of the bovine pH5 enzyme fraction could not be overcome by the addition of increasing amounts of rat liver pH5 enzyme. 3. Fractionation of bovine pH5 enzyme with ammonium sulphate into four fractions showed that all the fractions inhibited the incorporation of (14)C-labelled amino acids in the rat liver system, but to varying extents. The highest inhibition observed (90%) was exhibited by the 60%-saturated-ammonium sulphate fraction. 4. Heat treatment of bovine pH5 enzyme at various temperatures caused only a partial loss of its inhibitory effect on labelled amino acid incorporation by the rat liver system. Treatment at 105 degrees for 5min. resulted in the bovine pH5 enzyme fraction losing 30% of its inhibitory activity. 5. pH5 enzyme from bovine mammary gland strongly inhibited the charging of rat liver tRNA in the presence of its own pH5 enzymes. 6. The transfer of labelled amino acids from rat liver amino[(14)C]acyl-tRNA to protein in a system containing rat liver polyribosomes and pH5 enzyme was almost completely inhibited by bovine pH5 enzyme at a concentration of 2mg. of protein of the enzyme fraction. 7. One of the inhibitors of various stages of protein synthesis in rat liver present in bovine pH5 enzyme was identified as an active ribonuclease, and the second inhibitor present was shown to be tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号