首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
随着高通量DNA测序技术的飞速发展,越来越多的物种完成了基因组测序.定位编码基因、确定编码基因结构是基因组注释的基本任务,然而以往的基因组注释方法主要依赖于DNA及RNA序列信息.为了更加精确地解读完成测序的基因组,我们需要整合多种类型的组学数据进行基因组注释.近年来,基于串联质谱技术的蛋白质组学已经发展成熟,实现了对蛋白质组的高覆盖,使得利用串联质谱数据进行基因组注释成为可能.串联质谱数据一方面可以对已注释的基因进行表达验证,另一方面还可以校正原注释基因,进而发现新基因,实现对基因组序列的重新注释.这正是当前进展较快的蛋白质基因组学的研究内容.利用该方法系统地注释已完成测序的基因组已成为解读基因组的一个重要补充.本文综述了蛋白质基因组学的主要研究内容和研究方法,并展望了该研究方向未来的发展.  相似文献   

3.
RnaViz, a program for the visualisation of RNA secondary structure.   总被引:13,自引:3,他引:10       下载免费PDF全文
RnaViz is a user-friendly, portable, windows-type program for producing publication-quality secondary structure drawings of RNA molecules. Drawings can be created starting from DCSE alignment files if they incorporate structure information or from mfold ct files. The layout of a structure can be changed easily. Display of special structural elements such as pseudo-knots or unformatted areas is possible. Sequences can be automatically numbered, and several other types of labels can be used to annotate particular bases or areas. Although the program does not try to produce an initially non-overlapping drawing, the layout of a properly positioned structure drawing can be applied to a newly created drawing using skeleton files. In this way a range of similar structures can be drawn with a minimum of effort. Skeletons for several types of RNA molecule are included with the program.  相似文献   

4.
5.
Cellular RNA chaperones are crucial for the genesis of correctly folded functional RNAs. Using several complementary in vitro assays we find that the bunyavirus nucleocapsid protein (N) is an RNA chaperone. In the Bunyaviridae genomic RNA is in stable "panhandle" formation that arises through the hydrogen bonding of the terminal nucleotides of the RNA. The RNA chaperone function of N facilitates panhandle formation even though the termini are separated by >2 kb. RNA panhandle formation is likely driven by the exceptionally high base-pairing specificity of the terminal nucleotides as evidenced by P-num analysis. N protein can nonspecifically dissociate RNA duplexes. In addition, following panhandle formation, the RNA chaperone activity of N also appears to be involved in dissociation of the RNA panhandle and remains in association with the 5' terminus of the viral RNA following dissociation. Thus, N likely functions in the initiation of genome replication to allow efficient initiation of RNA synthesis by the viral polymerase. The RNA chaperone activity of N may be facilitated by an intrinsically disordered domain that catalyzes RNA unfolding driven by reciprocal entropy transfer. These observations highlight the essential features that are probably common to all RNA chaperones in which the role of the chaperone is to nonspecifically dissociate higher order structure and formation of functional higher order structure may often be predicted by RNA P-num value. The data also highlight features of N that are probably specifically important during replication of bunyavirus RNA.  相似文献   

6.
This paper presents two in-depth studies on RnaPredict, an evolutionary algorithm for RNA secondary structure prediction. The first study is an analysis of the performance of two thermodynamic models, Individual Nearest Neighbor (INN) and Individual Nearest Neighbor Hydrogen Bond (INN-HB). The correlation between the free energy of predicted structures and the sensitivity is analyzed for 19 RNA sequences. Although some variance is shown, there is a clear trend between a lower free energy and an increase in true positive base pairs. With increasing sequence length, this correlation generally decreases. In the second experiment, the accuracy of the predicted structures for these 19 sequences are compared against the accuracy of the structures generated by the mfold dynamic programming algorithm (DPA) and also to known structures. RnaPredict is shown to outperform the minimum free energy structures produced by mfold and has comparable performance when compared to suboptimal structures produced by mfold.  相似文献   

7.
We describe the further development of a widely used package of DNA and protein sequence analysis programs for microcomputers (1,2,3). The package now provides a screen oriented user interface, and an enhanced working environment with powerful formatting, disk access, and memory management tools. The new GenBank floppy disk database is supported transparently to the user and a similar version of the NBRF protein database is provided. The programs can use sequence file annotation to automatically annotate printouts and translate or extract specified regions from sequences by name. The sequence comparison programs can now perform a 5000 X 5000 bp analysis in 12 minutes on an IBM PC. A program to locate potential protein coding regions in nucleic acids, a digitizer interface, and other additions are also described.  相似文献   

8.
This paper presents two in-depth studies on RnaPredict, an evolutionary algorithm for RNA secondary structure prediction. The first study is an analysis of the performance of two thermodynamic models, Individual Nearest Neighbor (INN) and Individual Nearest Neighbor Hydrogen Bond (INN-HB). The correlation between the free energy of predicted structures and the sensitivity is analyzed for 19 RNA sequences. Although some variance is shown, there is a clear trend between a lower free energy and an increase in true positive base pairs. With increasing sequence length, this correlation generally decreases. In the second experiment, the accuracy of the predicted structures for these 19 sequences are compared against the accuracy of the structures generated by the mfold dynamic programming algorithm (DPA) and also to known structures. RnaPredict is shown to outperform the minimum free energy structures produced by mfold and has comparable performance when compared to sub-optimal structures produced by mfold.  相似文献   

9.
MOTIVATION: Protein annotation is a task that describes protein X in terms of topic Y. Usually, this is constructed using information from the biomedical literature. Until now, most of literature-based protein annotation work has been done manually by human annotators. However, as the number of biomedical papers grows ever more rapidly, manual annotation becomes more difficult, and there is increasing need to automate the process. Recently, information extraction (IE) has been used to address this problem. Typically, IE requires pre-defined relations and hand-crafted IE rules or annotated corpora, and these requirements are difficult to satisfy in real-world scenarios such as in the biomedical domain. In this article, we describe an IE system that requires only sentences labelled according to their relevance or not to a given topic by domain experts. RESULTS: We applied our system to meet the annotation needs of a well-known protein family database; the results show that our IE system can annotate proteins with a set of extracted relations by learning relations and IE rules for disease, function and structure from only relevant and irrelevant sentences.  相似文献   

10.
11.
Vienna RNA secondary structure server   总被引:1,自引:0,他引:1       下载免费PDF全文
The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.  相似文献   

12.
13.
14.
Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. AVAILABILITY: http://www.rostlab.org/services/snpdbe.  相似文献   

15.
biomaRt is a new Bioconductor package that integrates BioMart data resources with data analysis software in Bioconductor. It can annotate a wide range of gene or gene product identifiers (e.g. Entrez-Gene and Affymetrix probe identifiers) with information such as gene symbol, chromosomal coordinates, Gene Ontology and OMIM annotation. Furthermore biomaRt enables retrieval of genomic sequences and single nucleotide polymorphism information, which can be used in data analysis. Fast and up-to-date data retrieval is possible as the package executes direct SQL queries to the BioMart databases (e.g. Ensembl). The biomaRt package provides a tight integration of large, public or locally installed BioMart databases with data analysis in Bioconductor creating a powerful environment for biological data mining.  相似文献   

16.

Background  

RNAMute is an interactive Java application that calculates the secondary structure of all single point mutations, given an RNA sequence, and organizes them into categories according to their similarity with respect to the wild type predicted structure. The secondary structure predictions are performed using the Vienna RNA package. Several alternatives are used for the categorization of single point mutations: Vienna's RNAdistance based on dot-bracket representation, as well as tree edit distance and second eigenvalue of the Laplacian matrix based on Shapiro's coarse grain tree graph representation.  相似文献   

17.
BACKGROUND: The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS) system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. METHODOLOGY: The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA) framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA). The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions.  相似文献   

18.
This work investigates whether mRNA has a lower estimated folding free energy than random sequences. The free energy estimates are calculated by the mfold program for prediction of RNA secondary structures. For a set of 46 mRNAs it is shown that the predicted free energy is not significantly different from random sequences with the same dinucleotide distribution. For random sequences with the same mononucleotide distribution it has previously been shown that the native mRNA sequences have a lower predicted free energy, which indicates a more stable structure than random sequences. However, dinucleotide content is important when assessing the significance of predicted free energy as the physical stability of RNA secondary structure is known to depend on dinucleotide base stacking energies. Even known RNA secondary structures, like tRNAs, can be shown to have predicted free energies indistinguishable from randomized sequences. This suggests that the predicted free energy is not always a good determinant for RNA folding.  相似文献   

19.
Conformational switching in the secondary structure of RNAs has recently attracted considerable attention, fostered by the discovery of 'riboswitches' in living organisms. These are genetic control elements that were found in bacteria and offer a unique regulation mechanism based on switching between two highly stable states, separated by an energy barrier between them. In riboswitches, the energy barrier is crossed by direct metabolite binding, which facilitates regulation by allosteric means. However, other event triggers can cause switching to occur, such as single-point mutations and slight variations in temperature. Examples of switches with these event triggers have already been reported experimentally in the past. Here, the goal is to computationally design small RNA switches that rely on these triggers. Towards this end, our computer simulations utilize a variety of different similarity measures to assess the distances between an initial state and triggered states, based on the topology of the secondary structure itself. We describe these combined similarity measures that rely on both coarse-grained and fine-grained graph representations of the RNA secondary structure. As a result of our simulations, we provide some candidate sequences of approximately 30-50 nt, along with the exact triggers that drive the switching. The event triggers under consideration can be modelled by Zuker's mfold or the Vienna package. The proposed methodology that rely on shape measures can further be used to computationally generate more candidates by simulating various event triggers and calculating their effect on the shape.  相似文献   

20.
Programs for RNA mutational analysis that are structure-based and rely on secondary structure prediction have been developed and expanded in the past several years. They can be used for a variety of purposes, such as in suggesting point mutations that will alter RNA virus replication or translation initiation, investigating the effect of deleterious and compensatory mutations in allosteric ribozymes and riboswitches, computing an optimal path of mutations to get from one ribozyme fold to another, or analyzing regulatory RNA sequences by their mutational profile. This review describes three different freeware programs (RNAMute, RDMAS and RNAmutants) that have been developed for such purposes. RNAMute and RDMAS in principle perform energy minimization prediction by available software such as RNAfold from the Vienna RNA package or Zuker's Mfold, while RNAmutants provides an efficient method using essential ingredients from energy minimization prediction. Both RNAMute in its extended version that uses RNAsubopt from the Vienna RNA package and the RNAmutants software are able to predict multiple-point mutations using developed methodologies, while RDMAS is currently restricted to single-point mutations. The strength of RNAMute in its extended version is the ability to predict a small number of point mutations in an accurate manner. RNAmutants is well fit for large scale simulations involving the calculation of all k-mutants, where k can be a large integer number, of a given RNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号