首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was aimed to determine the incidence of coral diseases in six different reef sites at the Parque Nacional Archipiélago de Los Roques, Venezuela: Arrecife de herradura, Arrecife costanero, both at Dos Mosquises Sur Key, Boca de Cote, Carenero, Crasquí and Pelona de Rabusquí. Each reef was surveyed by using ten 10 m2-band transects (10 x 1 m), placed parallel to the long axis of the reef within a depth gradient ranging from 1 to 9 m depth. All healthy and injured corals, along each band transect, were counted and identified to species level. Additionally, all diseases and recent mortality that were still identifiable on each colony were also recorded. The occurrence of diseased colonies and other signs of reef decline between localities were compared by means of a Chi2 test. The absolute, relative and mean incidence was estimated for each disease and other signs of damage observed for all coral species surveyed at each site. The overall incidence of coral diseases was low for all the localities surveyed, only 6.04% of the 3 344 colonies observed, showed signs of diseases. The most important diseases recorded were the Yellow-Blotch Disease (YBD) and Dark Spots Disease (DSD) with 2.1% +/- 1.52 y 2.1% +/- 2.54, respectively. Significant differences were found in the incidence of coral diseases between reef sites (Chi2 p < 0.05). Finally, the occurrence of colonies injured by parrotfish bites and pomacentrids was higher compared with the incidence of coral diseases for all the reefs surveyed. In conclusion, currently the proportion of healthy colonies at Los Roques coral reefs is higher than the percentage of both diseased and injured colonies.  相似文献   

2.
There are limited quantitative data available documenting the natural, or non-epizootic, occurrence of scleractinian coral diseases over multiple years. Individual coral colonies exhibiting black band disease (BBD), white plague (WP), dark spots syndrome (DSS), and white band disease (WBD) were monitored 3 times per year on 5 south Florida reefs over a 2 yr period. Surveys included measurements of coral population composition, coral diversity, disease type, coral species affected, colony size, percent of colony affected, and the number of lesions or active infections per colony. Data on re-infections of the same colonies, multiple infections per colony, disease duration, disease-associated tissue mortality, and coral recruitment are also presented. A total of 674 coral colonies exhibiting coral diseases were tagged and monitored. DSS was the most common syndrome (n = 620 infected colonies), but BBD and WP infections caused the largest amount of coral tissue death. The only disease that exhibited a linear increase in incidence with elevated temperature was BBD. DSS and BBD were the most persistent conditions, and WP infections were comparatively short-lived, with obvious signs of disease typically disappearing after 2 to 3 mo. The only disease that caused total colony death as oppposed to partial mortality during the survey period was WBD. WP and DSS incidence was significantly positively correlated with the relative frequency of the species most commonly affected by each disease at each study site. Of the 61 colonies examined in the recruitment survey, only 5 scleractinian coral recruits were identified. The most commonly recorded colonizer of exposed coral skeleton was filamentous/turf algae, thus indicating the potential for a shift towards algal-dominated reef communities.  相似文献   

3.
At the beginning of 1996 coral reefs in Morrocoy National Park, Venezuela, suffered an unprecedented mass mortality event. As a consequence, live coral cover dropped to 2-10%. One of the few reefs that kept live coral cover over 35% was Cayo Sombrero; nonetheless, the presence of some coral diseases has been detected within the past 2 years, representing a new source of coral mortality. Due to this situation, this study started a monitoring program on the incidence of coral diseases and syndromes in the reef of Cayo Sombrero. The CARICOMP protocol was used in order to evaluate reef health. Ten parallel band-transects (20 x 2m) where established at two depth intervals: Five between 3-8 m and five between 8-12 m, and the frequency of both, healthy and unhealthy colonies of each coral species was recorded along each band transect. In addition to other sources of coral damage (predation, siltation, etc), significant differences in disease incidence between the two depths intervals were tested with a Kruskall-Wallis test. The main problems observed were coral diseases such as yellow band (4.2%), dark spots (1.61%) and white plague-II (1.4%), mainly affecting Montastraea faveolata, M. annularis and Siderastrea siderea. Siltation, affecting massive colonies, such as Colpophyllia natans and Diploria strigosa; algae overgrowth, predation, anchor damage, and bleaching. Significant differences were found in the incidence of unhealthy (Kruskall-Wallis, p < 0.05) bleached (Kruskall-Wallis, p < 0.05) and colonies affected by siltation (Kruskall-Wallis, p < 0.05). More than 60% of the 585 coral colonies surveyed at both depths were found to be healthy, indicating that the Cayo Sombrero reef is still in good conditions compared to other localities in the Park. This study stresses the need to conduct early monitoring programs that survey coral disease incidence as a source of mortality for this coral reef.  相似文献   

4.
Natural incidences of disease among scleractinian corals are unknown, since most studies have been initiated in response to specific disease outbreaks. Our ability to distinguish elevated disease incidences influenced by anthropogenic and climatic factors is limited since current estimates are probably inflated for extrapolation to larger areas. In our study, we used quantitative assessment methods to characterize the distribution and frequency of scleractinian and gorgonian coral diseases in the south Florida region. This paper is the first in a series that will detail different aspects of our studies. In this paper, we examined the strategy and methodology developed over 2 years to optimize the experimental design of our study. Pilot surveys were conducted in 1997 to develop and test methods, select and determine suitability of sites, and obtain preliminary data to assess the variance and efficiency of the sampling design. Survey periods targeted late spring, the time when coral diseases are believed to emerge, and late summer, the time when coral diseases are believed to be most prevalent. Two strata were chosen to evaluate patterns of coral disease: the first, geographic area, consisted of reefs in the vicinity of Key West, New Grounds and the Dry Tortugas; and the second, reef type, consisted of back, fore and transitional reefs. Random radial arc transects (10 m diameter) were used to quantify 10 diseases affecting 18 species of stony corals and gorgonian sea fans over a large geographical region. During the pilot survey, we demonstrated that the outer 8–10 m segment (113 m2) was an adequate sampling area. The survey implemented important quality assurance measures for data quality control. Power analysis determined that future studies should adopt =0.10, =0.0383, and 1-=0.9617 in our experimental design. The highest prevalence of disease in our study was during the 1997 summer survey, with a mean percent coral disease (MPCD) of 28% occurring at Key West area reefs, or 55% of all back reef stations. Our results do not show a clear pattern of seasonality in coral diseases within either stratum, although differences in disease distribution between reef types and geographic areas were apparent in some of the spring and summer surveys.  相似文献   

5.
Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion boundary between apparently healthy tissue and exposed white skeleton. Surveys of eight sites around Heron Reef in 2004 revealed a mean prevalence of 8.1±0.9%, affecting the three common species (Acropora cytherea, A. hyacinthus, A. clathrata) and nine other tabular Acropora spp. While all sizes of colonies were affected, white syndrome disproportionately affected larger colonies of tabular Acroporids (>80 cm). The prevalence of white syndrome was strongly related to the abundance of tabular Acroporids within transects, yet the incidence of the syndrome appears unaffected by proximity to other colonies, suggesting that while white syndrome is density dependant, it does not exhibit a strongly aggregated spatial pattern consistent with previous coral disease outbreaks. Acroporid white syndrome was not transmitted by either direct contact in the field or by mucus in aquaria experiments. Monitoring of affected colonies revealed highly variable rates of tissue loss ranging from 0 to 1146 cm(-2) week(-1), amongst the highest documented for a coral disease. Contrary to previous links between temperature and coral disease, rates of tissue loss in affected colonies increased threefold during the winter months. Given the lack of spatial pattern and non-infectious nature of Acroporid white syndrome, further studies are needed to determine causal factors and longer-term implications of disease outbreaks on the Great Barrier Reef.  相似文献   

6.
Coral diseases have been reported as a major problem affecting Caribbean coral reefs. During August 2000, a coral mortality event of White Plague Disease-II (WPD-II) was observed at Madrizqui Reef in Los Roques National Park, Venezuela. This disease was identified as the major cause of coral mortality, affecting 24% of all colonies surveyed (n = 1 439). Other diseases such as Black Band Disease (BBD), Yellow Blotch Disease (YBD), Dark Spots Disease (DSD) and White Band Disease (WBD) were also recorded, but showed a lower incidence (0.14-0.97%). Two depth intervals, D1 (5.5-6.5 m) and D2 (9-9.5 m) were surveyed with two sets of three band transects 50 x 2 m long, placed parallel to the long axis of the reef. All healthy and injured corals, along each band transect, were counted and identified to species level. Additionally, all diseases and recent mortality that were still identifiable on each colony also were recorded. The incidence of colonies affected by WPD-II ranged from 12.8 to 33% among transects, where thirteen species of scleractinian corals showed several degrees of mortality. The species most affected were Montastraea annularis (39.13%), M. faveolata (26.67%), M. franksi (9.86%), Stephanocoenia intersepta (7.25%), Colpophyllia natans (6.96%), Diploria labyrinthiformis (2.99%), Mycetophyllia aliciae (2.03%), M. cavernosa (1.74%), and D. strigosa (1.45%). WPD-II was more common in the deeper strata (9-9.5 m), where 63% of the surveyed colonies were affected, although the disease was present along the entire reef. Presently, it is imperative to determine how fast the disease is spreading across the reef, how the disease spreads across the affected colonies and what the long-term effects on the reef will be.  相似文献   

7.
Quantification of Loss and Change in Floridian Reef Coral Populations   总被引:4,自引:0,他引:4  
Six coral reef locations between Miami and Key West were markedwith stainless steel stakes and rephotographed periodicallybetween 1984 and 1991. The monitored areas included two photostationsin the Looe Key National Marine Sanctuary, two photostationsin the Key Largo National Marine Sanctuary, and two photostationsin the Biscayne National Park. Stations were monitored for speciesnumber, percent cover, and species diversity of the scleractinianand hydrozoan stony corals. Monitoring began in 1984 for photostationsin the National Marine Sanctuaries and in 1989 for stationsin the National Park. All six areas lost coral species between the initial surveyyear and 1991. Survey areas lost between one and four species;these losses constituted between 13% and 29% of their speciesrichness. Five of the six areas lost live coral cover. Basedupon photographs taken repeatedly at these locations, net lossesranged between 7.3% and 43.9%. In the one station showing anincrease in coral cover, the increase was only for the canopybranches of Acropora palmata; understory branches of this samespecies lost surface area at the same rate as canopy branchesgained area. For most of the common species, there was a reductionin the total number of living colonies in the community, anda diminution in the number of large, mature colonies. Throughoutthe study period, there was no recruitment to any of the photostationsby any of the massive frame building coral species. Mortality of this magnitude is often associated with hurricanedamage, but in this survey the losses occurred during a periodwithout catastrophic storms. Sources of mortality identifiablein the photographs include (1) black band disease and (2) "bleaching"other potential sources of mortality are also considered. Weconclude, for our survey areas, that loss rates of this magnitudecannot be sustained for protracted periods if the coral communityis to persist in a configuration resembling historical coralreef community structure in the Florida Keys.  相似文献   

8.
In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with >90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of disease-associated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4–61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0–79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to understand links between coral bleaching and disease.  相似文献   

9.
Coral diseases have been documented in many areas of the Caribbean, but studies in the eastern Caribbean region have been lacking. The prevalence, distribution patterns and contribution to the mortality of coral tissue by black band discase (BBD), white plague (WP) and dark spots disease (DSD) were examined at five reef sites along the west coast of Dominica. 185 of the 325 diseased colonies recorded between March and August 2000, in a survey area of 5884 m2, were WP. This disease contributed to 89% of the total 4.08 m2 of tissue mortality caused by diseases during the survey period. WP also affected the largest average tissue surface area (relative to colony size) per colony and exhibited the largest average tissue loss per infection when compared to BBD and DSD. The species most susceptible to WP and BBD in Dominica differed from most other described Caribbean locations with Siderastrea siderea being most susceptible. S. siderea was also the only species noted to be susceptible to DSD. Measurements of colony size revealed that each disease affected the larger colonies of some coral species. Comparisons between disease prevalence at each site and various physical parameters, including temperature, wave height, depth, and current patterns, did not exhibit significant correlations. The lack of a direct correlation between temperature and disease prevalence indicates that there are other seasonal factors contributing to the higher prevalence of diseases recorded during the summer months in Dominica. WP prevalence at each site was positively correlated to the relative species abundances of the species most susceptible to WP. This was the dominant factor in determining site-specific disease densities of this disease and may therefore be a valuable predictive and management tool. There were no correlations between BBD or DSD and the relative abundances of susceptible species. The spatial distribution patterns of WP, BBD and DSD were clustered, which is a distribution pattern that suggests an infectious disease.  相似文献   

10.
Recent findings on the ecology, etiology and pathology of coral pathogens, host resistance mechanisms, previously unknown disease/syndromes and the global nature of coral reef diseases have increased our concern about the health and future of coral reef communities. Much of what has been discovered in the past 4 years is presented in this special issue. Among the significant findings, the role that various Vibrio species play in coral disease and health, the composition of the 'normal microbiota' of corals, and the possible role of viruses in the disease process are important additions to our knowledge. New information concerning disease resistance and vectors, variation in pathogen composition for both fungal diseases of gorgonians and black band disease across oceans, environmental effects on disease susceptibility and resistance, and temporal and spatial disease variations among different coral species is presented in a number of papers. While the Caribbean may still be the 'disease hot spot' for coral reefs, it is now clear that diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration.  相似文献   

11.
Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.  相似文献   

12.
In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these species were most affected by biotic stressors and human impacts, all of which need to be addressed to enhance survival of outplants. Problems with culture practices at OID, such as high water temperature, adequate light levels and persistent overgrowth by macroalgae could be addressed through simple modifications. Nevertheless, coral disease and other stressors are of major concern to the most important reef builders, as these species are less amenable to restoration, collection could threaten their survival and losses require decades to centuries to replace.  相似文献   

13.
In November 2004, a high prevalence of coral disease was observed at several sites around Navassa, an uninhabited Caribbean island between Haiti and Jamaica. At least fifteen mounding and foliaceous scleractinian species were affected with ‘white disease’ signs. Coral disease incidence was observed to be absent in quantitative surveys in 2002, but in 2004 average prevalence (i.e., % of colonies) of active disease ranged up to 15% and an additional 19% prevalence of colonies with patterns of recent mortality consistent with disease. Large and/or Montastraea spp. colonies were disproportionately affected and the anticipated loss of these large, reef-building colonies will impact coral community structure. One or more potential factors may influence the initiation and persistence of disease outbreak conditions at Navassa including recent hurricane disturbance, regional patterns of increasing disease impact in deep or remote Caribbean reefs, or vectoring of disease by the corallivorous worm, Hermodice carunculata.  相似文献   

14.
Ten reefs of the Veracruz Reef System (VRS) were surveyed to evaluate the distribution and prevalence of diseases that affect stony corals. Total disease prevalence on corals in the VRS was 4.8%. Seven diseases affecting 6 coral genera (4 of which are the most abundant) were observed in 85.2% of the evaluated sites. As observed in other reefs of the Caribbean, dark spots disease had the highest prevalence (2.9%) and widest distribution. The incidence of disease showed a patchy distribution, with prevalence being significantly higher on the reef flats than on the windward and leeward sides.  相似文献   

15.
The number of coral diseases, coral species they infect, number of reported cases, and range over which these diseases are distributed have all increased dramatically in the past 3 decades, posing a serious threat to coral reef ecosystems worldwide. While some published studies provide data on the distribution of coral diseases at local and regional levels, few studies have addressed the factors that may drive these distributions. We recorded coral disease occurrence, prevalence, and severity along with temperature, sedimentation, and coral population data (species abundance and colony size) over 2 consecutive summers on reefs near Lee Stocking Island (LSI) in the Bahamas' Exuma Chain. In 2002 a total of 11092 coral colonies (all species present) were examined within a survey area of 9420 m2, and 13 973 colonies within 10 362 m2 in 2003. Similar to other reports, relatively large, framework species including Siderastrea siderea, Colpophyllia natans, and Montastraea annularis, along with the smaller Dichocoenia stokesi, were the species most susceptible to coral disease. Recurring infections were observed on individual colonies from 2002 to 2003, and were more likely for black band disease (BBD) than for either white plague (WP) or dark spots syndrome (DS). In 2002, WP and DS demonstrated clumped distributions, while BBD was randomly distributed. However, in 2003 BBD and WP were clumped. This is the first study, to our knowledge, that quantitatively documents coral disease dynamics on reefs surrounding LSI.  相似文献   

16.
Diseases affect coral species fitness and contribute significantly to the deterioration of coral reefs. The increase in frequency and severity of disease outbreaks has made evaluating and determining coral resistance a priority. Phylogenetic patterns in immunity and disease can provide important insight to how corals may respond to current and future environmental and/or biologically induced diseases. The purpose of this study was to determine if immunity, number of diseases and disease prevalence show a phylogenetic signal among Caribbean corals. We characterized the constitutive levels of six distinct innate immune traits in 14 Caribbean coral species and tested for the presence of a phylogenetic signal on each trait. Results indicate that constitutive levels of some individual immune related processes (i.e. melanin concentration, peroxidase and inhibition of bacterial growth), as well as their combination show a phylogenetic signal. Additionally, both the number of diseases affecting each species and disease prevalence (as measures of disease burden) show a significant phylogenetic signal. The phylogenetic signal of immune related processes, combined with estimates of species divergence times, indicates that among the studied species, those belonging to older lineages tend to resist/fight infections better than more recently diverged coral lineages. This result, combined with the increasing stressful conditions on corals in the Caribbean, suggest that future reefs in the region will likely be dominated by older lineages while modern species may face local population declines and/or geographic extinction.  相似文献   

17.
Recent observations suggest that a spreading disease is increasingly contributing to hard coral mortality in the Solitary Islands Marine Park, NSW, Australia. This study determined coral disease prevalence and rate-of-spread through individual affected colonies and investigated the effect this epizootic had on coral populations at sites adjacent to South West Solitary Island. Quantitative data were collected between 2002 and 2004 using photographic and video methods, and visual census along radial arc belt transects. Disease similar to the reported white syndrome and white plague was apparent, spreading through hard coral species from the genera Turbinaria, Acropora, Goniastrea, Pocillopora, Stylophora and Porites. Coral disease prevalence varied between survey dates with mean prevalence increasing from 8.55% during March 2003 to 13.58% in June and declining to 7.75% in September and 6.21% during March 2004. There was a significant difference in mean prevalence between the affected species (p<0.001) and an overall difference between survey dates (p=0.001). Additionally, the rate-of-spread of coral disease through coral colonies determined using repeated, seasonal, still photographs followed similar patterns, with disease progression differing between affected species (p=0.004), and between survey dates (p<0.001). Analysis of the video-transects indicated significant difference in disease prevalence over larger spatial scales (100s of m). However, disease frequency did not vary significantly between 2002 and 2003.  相似文献   

18.
Other than coral bleaching, few coral diseases or diseases of other reef organisms have been reported from Japan. This is the first report of lesions similar to Porites ulcerative white spots (PUWS), brown band disease (BrB), pigmentation response (PR), and crustose coralline white syndrome (CCWS) for this region. To assess the health status and disease prevalence, qualitative and quantitative surveys (3 belt transects of 100 m2 each on each reef) were performed in March and September 2010 on 2 reefs of the Ginowan-Ooyama reef complex off Okinawa, and 2 protected reefs off Zamani Island, in the Kerama Islands 40 km west of Okinawa. Overall, mean (±SD) disease prevalence was higher in Ginowan-Ooyama (9.7 ± 7.9%) compared to Zamami (3.6 ± 4.6%). Porites lutea was most affected by PUWS at Ooyama (23.1 ± 10.4 vs. 4.5 ± 5.2%). White syndrome (WS) mostly affected Acropora cytherea (12. 5 ± 18.0%) in Zamami and Oxipora lacera (10.2 ± 10%) in Ooyama. Growth anomalies (GA) and BrB were only observed on A. cytherea (8.3 ± 6.2%) and A. nobilis (0.8%) at Zamami. Black band disease affected Pachyseris speciosa (6.0 ± 4.6%) in Ooyama only. Pigmentation responses (PR) were common in massive Porites in both localities (2.6 ± 1.9 and 5.6 ± 2.3% respectively). Crustose coralline white syndrome (CCWS) was observed in both localities. These results significantly expand the geographic distribution of PUWS, BrB, PR and CCWS in the Indo-Pacific, indicating that the northernmost coral reefs in the western Pacific are susceptible to a larger number of coral diseases than previously thought.  相似文献   

19.
Indo-Pacific coral diseases are currently considered one of the 15 globally important threats requiring conservation attention. The coral reefs of the Maldives are experiencing a local decline, with the presence of some coral diseases reported only recently. We investigated the spatial variability in prevalence and distribution of two protozoan diseases, skeletal eroding band (SEB) and brown band disease (BrB), in three islands in the Faafu Atoll: an inhabited island (Magoodhoo), an uninhabited island (Adanga) and a resort island (Filitheyo). Our study revealed a low level of mean disease prevalence for both diseases (<1 %), with Magoodhoo and Adanga being the most affected by BrB and SEB, respectively. However, our preliminary temporal investigations revealed an increment of both coral diseases in Adanga during the last 4 years. Furthermore, we observed different spatial patterns between the two diseases, with SEB positively correlated to dead coral coverage. Finally, Acropora was the most affected coral genus, hosting both coral diseases. Considering that Acropora is the most abundant genus in the archipelago and many other areas in the Indo-Pacific, this finding highlights the need for particular conservation efforts for this genus. These results represent just a first step in the assessment of Maldivian coral disease epidemiology, and more detailed analyses of regional differences in diseases prevalence are needed to further explore their impacts on Maldivian coral reefs.  相似文献   

20.
Diseases are part of the natural world, but human activities may affect and disrupt the natural dynamics of diseases, threatening wildlife species and human welfare. We listed the number of species threatened by diseases and compiled their distributional ranges. Based on such data we identify global disease hotspots, regions where disrupted disease dynamics threaten to decimate several species into extinction. The number of species threatened by disease may increase, and climate change may act synergistically increasing the severity of disease incidence in the hotspots, and drive the emergence of new disease hotspots. Until now diseases were thought to play a secondary role in the biodiversity extinction crisis, but the global threat scenario is so dynamic that if we do not bring diseases to the forefront of conservation actions and policies, they may not only bring species into extinction but they may also affect human populations as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号