首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new NMR spin relaxation experiment is described for measuring chemical exchange time constants from approximately 0.5 ms to 5 ms in 15N-labeled macromolecules. The pulse sequence is based on the Carr–Purcell–Meiboom–Gill technique [Carr and Purcell (1954) Phys. Rev., 94, 630–638; Meiboom and Gill (1958) Rev. Sci. Instrum., 29, 688–691; Loria et al. (1999) J. Am. Chem. Soc., 121, 2331–2332], but implements TROSY selection [Pervushin et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371] to permit measurement of exchange linebroadening contributions to the narrower component of the 1H-15N scalar-coupled doublet. This modification extends the size limitation imposed on relaxation measurements due to the fast decay of transverse magnetization in larger macromolecules. The new TROSY-CPMG experiment is demonstrated on a [U-98% 15 N] labeled sample of basic pancreatic trypsin inhibitor and a [U-83% 2H, U-98% 15 N] labeled sample of triosephosphate isomerase, a 54 kDa homodimeric protein.  相似文献   

2.
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [1H]13C and [1H]15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [1H]13C heteronuclear NOE in combination with 13C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [1H]15N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples.  相似文献   

3.
Relaxation compensated constant-time Carr–Purcell–Meiboom–Gill relaxation dispersion experiments for amide protons are presented that detect s-ms time-scale dynamics of protein backbone amide sites. Because of their ten-fold larger magnetogyric ratio, much shorter 180° pulses can be applied to 1H than to 15N spins; therefore, off-resonance effects are reduced and a wider range of effective rf fields can often be used in the case of 1H experiments. Applications to [1H-15N]-ubiquitin and [1H-15N]-perdeuterated HIV-1 protease are discussed. In the case of ubiquitin, we present a pulse sequence that reduces artifacts that arise from homonuclear 3J(HN-H) coupling. In the case of the protease, we show that relaxation dispersion of both 1H and 15N spins provides a more comprehensive picture of slow backbone dynamics than does the relaxation dispersion of either spin alone. We also compare the relative merits of 1H versus 15N transverse relaxation measurements and note the benefits of using a perdeuterated protein to measure the relaxation dispersion of both spin types.  相似文献   

4.
Summary Three-dimensional 1H-TOCSY-relayed ct-[13C,1H]-HMQC is a novel experiment for aromatic spin system identification in uniformly 13C-labeled proteins, which is implemented so that it correlates the chemical shift of a given aromatic proton with those of the directly attached carbon and all vicinal protons. The ct-HMQC scheme is used both for overlay of the indirect 1H and 13C chemical shift evolution periods and for the generation of 1H-1H antiphase magnetization to accelerate the 1H-TOCSY magnetization transfer at short mixing times. As an illustration, data recorded for the 18 kDa protein cyclophilin A are presented. Since transverse relaxation of 13C-1H zero-quantum and double-quantum coherences is to first order insensitive to 13C-1H heteronuclear dipolar relaxation, the new experiment should work also for proteins with molecular weights above 20 kDa.  相似文献   

5.
A general method for improving of the sensitivity of the TROSY-type triple resonance experiments in the presence of conformational exchange-induced (CSX) relaxation is proposed based on the use of CPMG-INEPT (Müller et al., J. Am. Chem. Soc., 1995, 117, 11043–11048) during the N–C polarization transfer periods. Significantly improved sensitivity is demonstrated for the majority of cross-peaks in the new [15N,1H]-TROSY-XY-HNCA experiment, measured with partially folded RNase AS-Protein, with negligible loss of sensitivity for resonances unaffected by CSX relaxation. In addition, a comparison of cross-peak amplitudes in [15N,1N]-TROSY-XY-HNCA and conventional [15N,1H]-TROSY-HNCA spectra provides a quick and sensitive estimation of the CSX relaxation contribution.  相似文献   

6.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

7.
The magnitude of the 15N longitudinal relaxation rate typically decreases as magnetic field strength increases in globular proteins in solution. Thus, it is important to test the performance of 15N longitudinal relaxation experiments at high field strength. Herein, a tool to investigate systematic errors in 15N longitudinal relaxation rate, R1, is introduced. The tool, a difference in R1 values between the two components of the 1H-coupled 15N magnetizations, R 1 (1) –R 1 (2) , conveniently detects inefficiencies in cancellation of cross correlation between 1H–15N dipolar coupling and 15N chemical shift anisotropy. Experiments, in varying conditions, and simulations of a two-spin system indicate that insufficient cancellation of the cross correlation is due to (1) 1H pulse imperfection and (2) 1H off-resonance effect, and (3) is further amplified by residual 15N transverse magnetization that is caused by the 15N off-resonance effect. Results also show that this problem can be easily and practically remedied by discarding the initial decay points when recording 15N longitudinal relaxation in proteins.  相似文献   

8.
Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.  相似文献   

9.
A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15N, 13C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15N relaxation rates of unfolded polypeptides in high resolution constant-time [1H, 15N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence.  相似文献   

10.
We present a projected [1H,15N]-HMQC-[1H,1H]-NOESY experiment for observation of NOE interactions between amide protons with degenerate 15N chemical shifts in large molecular systems. The projection is achieved by simultaneous evolution of the multiple quantum coherence of the nitrogen spin and the attached proton spin. In this way NOE signals can be separated from direct-correlation peaks also in spectra with low resolution by fully exploiting both 1H and 15N frequency differences, such that sensitivity can be increased by using short maximum evolution times. The sensitivity of the experiment is not dependent on the projection angle for projections up to 45° and no additional pulses or delays are required as compared to the conventional 2D [1H,15N]-HMQC-NOESY. The experiment provides two distinct 2D spectra corresponding to the positive and negative angle projections, respectively. With a linear combination of 1D cross-sections from the two projections the unavoidable sensitivity loss in projection spectra can be compensated for each particular NOE interaction. We demonstrate the application of the novel projection experiment for the observation of an NOE interaction between two sequential glycines with degenerate 15N chemical shifts in a 121.3 kDa complex of the linker H1 histone protein with a 152 bp linear DNA.  相似文献   

11.
An RNA oligonucleotide that contains the binding site for Escherichia coli ribosomal protein S8 was prepared with uniform 15N isotopic enrichment and uniform deuterium enrichment at all non-exchangeable sites using enzymatic methods. The RNA binding site, which contains 44 nt, forms a hairpin in solution and requires Mg2+for proper folding. The longitudinal magnetization recovery rates of the exchangeable protons were compared for the [2H,15N]-enriched RNA molecule and for the corresponding fully [2H,15N]-enriched RNA hairpin. It was found that 1H-1H dipolar relaxation significantly contributes to the recovery of exchangeable proton longitudinal magnetization. The exchangeable proton resonance line widths were less affected by deuteration, indicating that chemical exchange with H2O remains the dominant mechanism of transverse magnetization relaxation. Nevertheless, deuteration of this RNA hairpin was found to enhance the sensitivity of NOE-based experiments relative to the fully protonated hairpin and to simplify 2D NMR spectra. The increased signal-to-noise ratio facilitated the assignment of the cytidine amino resonances and several of the purine nucleotide amino resonances and permitted the identification of NOE crosspeaks that could not be observed in spectra of the fully protonated RNA hairpin.  相似文献   

12.
Improved relaxation-compensated Carr–Purcell–Meiboom-Gill pulse sequences are reported for studying chemical exchange of backbone 15N nuclei. In contrast to the original methods [J. P. Loria, M. Rance, and A. G. Palmer, J. Am. Chem. Soc. 121, 2331–2332 (1999)], phenomenological relaxation rate constants obtained using the new sequences do not contain contributions from 1H-1H dipole-dipole interactions. Consequently, detection and quantification of chemical exchange processes are facilitated because the relaxation rate constant in the limit of fast pulsing can be obtained independently from conventional 15N spin relaxation measurements. The advantages of the experiments are demonstrated using basic pancreatic trypsin inhibitor.  相似文献   

13.
Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.  相似文献   

14.
The backbone dynamics of the bacteriorhodopsin fragment (1–36)BR solubilized in a 1:1 chloroform/methanol mixture were investigated by heteronuclear 1H-15N NMR spectroscopy. The heteronuclear 15N longitudinal and transverse relaxation rates and 15N{1H} steady-state NOEs were measured at three magnetic fields (11.7, 14.1, and 17.6 T). Careful statistical analysis resulted in the selection of the extended model-free form of the spectral density function [Clore et al. (1990) J. Am. Chem. Soc., 112, 4989–4991] for all the backbone amides of (1–36)BR. The peptide exhibits motions on the micro-, nano-, and picosecond time scales. The dynamics of the -helical part of the peptide (residues 9–31) are characterised by nanosecond and picosecond motions with mean order parameters S s 2 = 0.60 and S f 2 = 0.84, respectively. The nanosecond motions were attributed to the peptide's helix-coil transitions in equilibrium. Residues 3–7 and 30–35 also exhibit motions on the pico- and nanosecond time scales, but with lower order parameters. Residue 10 at the beginning of the -helix and residues 30–35 at the C-terminus are involved in conformational exchange processes on the microsecond time scale. The implications of the obtained results for the studies of helix-coil transitions and the dynamics of membrane proteins are discussed.  相似文献   

15.
We have previously shown that 1H pulsed-field-gradient(PFG) NMR spectroscopy provides a facile method for monitoring proteinself-association and can be used, albeit with some caveats, to measure theapparent molecular mass of the diffusant [Dingley et al. (1995) J. Biomol.NMR, 6, 321–328]. In this paper we show that, for15N-labelled proteins, selection of1H-15N multiple-quantum (MQ) coherences in PFGdiffusion experiments provides several advantages over monitoring1H single-quantum (SQ) magnetization. First, the use of agradient-selected MQ filter provides a convenient means of suppressingresonances from both the solvent and unlabelled solutes. Second,1H-15N zero-quantum coherence dephases morerapidly than 1H SQ coherence under the influence of a PFG.This allows the diffusion coefficients of larger proteins to be measuredmore readily. Alternatively, the gradient length and/or the diffusion delaymay be decreased, thereby reducing signal losses from relaxation. In orderto extend the size of macromolecules to which these experiments can beapplied, we have developed a new MQ PFG diffusion experiment in which themagnetization is stored as longitudinal two-spin order for most of thediffusion period, thus minimizing sensitivity losses due to transverserelaxation and J-coupling evolution.  相似文献   

16.
Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid β-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T and cross relaxation times. In addition, breakage of the β-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal.  相似文献   

17.
The biosynthetic origins of the hydrogen, nitrogen and oxygen atoms in the pyrrolidone ring of violacein'were established by an anaylses of the 1H, 13C NMR and MS spectra of its isotope-enriched metabolites. Feeding experiments of [2-2H] and [3-2H2]tryptophans have revealed that the hydrogen in the pyrrolidone ring was derived from the methylene protons at the 3-position of tryptophan. The stereochemical fate of the prochiral hydrogens was determined to be in the retention of the pro-S hydrogen by these feeding experiments using [3R-2H] and [3S”-2H]tryptophans. The incorporation experiment of [α-15N]tryptophan demonstrated that the nitrogen atom in the ring originated from the α-amino group of tryptophan. The incorporation experiment of 18O2 gas verified that all the oxygen atoms of violacein were derived from the molecular oxygen.  相似文献   

18.
In experiments with proteins of molecular weights around 100 kDa the implementation of [15N,1H]-TROSY-elements in [15N]-constant-time triple resonance experiments yields sensitivity enhancements of one to two orders of magnitude. An additional gain of 10 to 20% may be obtained with the use of sensitivity enhancement elements. This paper describes a novel sensitivity enhancement scheme which is based on concatenation of the 13 C 15N magnetization transfer with the ST2-PT element, and which enables proper TROSY selection of the 15N multiplet components.  相似文献   

19.
 CW ENDOR (X-band) spectra for the purple mixed-valence [Cu(1.5+)...Cu(1.5+)], S = 1/2, CuA site in nitrous oxide reductase were obtained after insertion of 65Cu or both 65Cu and 15N-histidine. The 14N/15N isotopic substitution allowed for an unambiguous deconvolution of proton and nitrogen hyperfine couplings in the spectra. A single nitrogen coupling with a value of 12.9 ± 0.4 MHz for 14N was detected. Its anisotropy was characteristic for imidazole bound to copper. A spin density of 3–5% was estimated for the nitrogen donors to CuA, indicating that the ground state is 2B3u. Proton hyperfine structure was detected from four Cβ protons of coordinating cysteine residues. Their isotropic and anisotropic parts were deconvoluted by spectral simulation. From the anisotropic couplings a spin density of 16–24% was estimated for each of the cysteine thiolate donors of CuA. The [NHisCu(RS)2CuNHis]+ core structure of CuA in nitrous oxide reductase from Pseudomonas stutzeri is predicted to be similar to the crystallographically determined CuA* structure (Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M (1995) Proc Natl Acad Sci USA 92 : 11955–11959), but distinct from the CuA structure of Paracoccus denitrificans cytochrome c oxidase (Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376 : 660–669). The angular dependence of the isotropic couplings as a function of the electronic ground state was calculated by the INDO/S method. The Mulliken atomic-spin populations calculated by a gradient-corrected density functional method and the semiempirical INDO/S method were compared with experimentally derived spin populations, and good agreement between theory and experiment was found for both calculations. The ground state of CuA is best represented by the resonance structures of the form [CuISSCuII↔ CuISSCuI↔ CuISSCuI↔ CuIISSCuI]. It is proposed that the Cu 4s,p as well as sulfur 3d orbitals play a role in the stabilization of this novel type of cluster. Received: 17 September 1997 / Accepted: 28 October 1997  相似文献   

20.
Experimental sensitivity remains a major drawback for the application of NMR spectroscopy to fragile and low concentrated biomolecular samples. Here we describe an efficient polarization enhancement mechanism in longitudinal-relaxation enhanced fast-pulsing triple-resonance experiments. By recovering undetectable 1H polarization originating from longitudinal relaxation during the pulse sequence, the steady-state 15N polarization becomes enhanced by up to a factor of ~5 with respect to thermal equilibrium yielding significant sensitivity improvements compared to conventional schemes. The benefits of BEST-TROSY experiments at high magnetic field strength are illustrated for various protein applications, but they will be equally useful for other protonated macromolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号