首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析贵州盘县火铺镇茅口期海平面变化的过程和Ting类动物群的变化规律,研究相对海平面变化对Ting类动物群构及演替的影响。相对海平面的升降变化可引起水深及相关生态条件的改变,并对Ting类动物群产生影响,相对海平面变化的幅度和速率是造成Ting类动物群面貌变化的重要因素,三级相对海平面上升末期和下降未期,海平面的大幅度抬升或下降是造成Ting类物种丰度下降,新种增加量减少的重要原因,海平面的持续缓  相似文献   

2.
以化石带为基础的华南(竹蜓)类属种数据库   总被引:5,自引:0,他引:5  
以华南类化石带序列为基础 ,对华南地区类属种的地层分布资料进行了整理 ,建立了华南类 90属14 47种的地层、地理分布数据库。在数据库中 ,可以类化石带为时间尺度 ,查询华南地区不同时期类属种的首现及末现数 ,统计类属种数及属种名单。通过对查询、统计结果的分析 ,可以研究华南地区石炭—二叠纪类分异度的变化过程 ,为研究类动物群的辐射演化、灭绝型式提供定量数据。初步分析结果揭示 :华南地区类动物群物种分异度在早二叠世时曾大幅度下降。就物种消失的数量而言 ,早二叠世类动物群物种分异度的下降构成了本区石炭—二叠纪规模最大的类动物群事件。  相似文献   

3.
Abstract: Three family‐level cladistic analyses of temnospondyl amphibians are used to evaluate the impact of taxonomic rank, tree topology, and sample size on diversity profiles, origination and extinction rates, and faunal turnover. Temnospondyls are used as a case study for investigating replacement of families across the Permo‐Triassic boundary and modality of recovery in the aftermath of the end‐Permian mass extinction. Both observed and inferred (i.e. tree topology‐dependent) values of family diversity have a negligible effect on the shape of the diversity curve. However, inferred values produce both a flattening of the curve throughout the Cisuralian and a less pronounced increase in family diversity from Tatarian through to Induan than do observed values. Diversity curves based upon counts of genera and species display a clearer distinction between peaks and troughs. We use rarefaction techniques (specifically, rarefaction of the number of genera and species within families) to evaluate the effect of sampling size on the curve of estimated family‐level diversity during five time bins (Carboniferous; Cisuralian; Guadalupian–Lopingian; Early Triassic; Middle Triassic–Cretaceous). After applying rarefaction, we note that Cisuralian and Early Triassic diversity values are closer to one another than they are when the observed number of families is used; both values are also slightly higher than the Carboniferous estimated diversity. The Guadalupian–Lopingian value is lower than raw data indicate, reflecting in part the depauperate land vertebrate diversity from the late Cisuralian to the middle Guadalupian (Olson’s gap). The time‐calibrated origination and extinction rate trajectories plot out close to one another and show a peak in the Induan, regardless of the tree used to construct them. Origination and extinction trajectories are disjunct in at least some Palaeozoic intervals, and background extinctions exert a significant role in shaping temnospondyl diversity in the lowermost Triassic. Finally, species‐, genus‐, and family trajectories consistently reveal a rapid increase in temnospondyl diversity from latest Permian to earliest Triassic as well as a decline near the end of the Cisuralian. However, during the rest of the Cisuralian family diversity increases slightly and there is no evidence for a steady decline, contrary to previous reports.  相似文献   

4.
Analysis of a large database of the stratigraphic distribution of fusulinacean Foraminifera reveals an Early Permian event of significant decline of species diversity in South China. Data from Late Carboniferous to Early Permian sections without apparent unconformity in southwest China were evaluated to determine if the apparent pattern of species disappearance was caused by bias in fossil preservation associated with Early Permian sea-level changes. Statistical analysis suggests that the Early Permian event started in the Late Sakmarian with a significant drop of species diversity in the Robustoschwagerina ziyunensis Zone and continued through the Pamirina darvasica Zone of the Artinskian and into the Brevaxina dyhrenfurthi Zone of the Early Kungarian, resulted in a total loss of about 40% species diversity in the fusulinacean fauna. The Early Permian event is the most extensive bioevent in the history of fusulinacean Foraminifera at the species level although it is less significant at the generic level. Because a similar faunal change has been found among the fusulinacean assemblages in North America and in various regions of Tethys, this event may represent a major faunal turn-over in response to the Early Permian changes in sea level and could be of a global nature. Previous recognition of this event was hampered by Early Permian unconformities in North America and other regions of Tethys.  相似文献   

5.
Diversity and extinction patterns of Permian coral faunas of China   总被引:15,自引:0,他引:15  
Coral diversity and extinction patterns in the Permian of China are revealed through statistical analyses of 56 coral families, 263 genera and 2100 species from five consecutive time intervals. The highest coral diversity is in the Chuanshanian, with 753 species, 167 genera and 39 families. In contrast, the lowest diversity is in the Changhsingian, with only 68 species, 20 genera and 10 families. Two decreases in diversity can be recognized during the Permian. The first occurred at the end of the Maokouan (end-Guadalupian) and is marked by the loss of 75.6% of coral families, 77.8% of coral genera and 82.2% of coral species. The second major diversity drop took place at the end of the Changhsingian, when all rugose and tabulate corals became extinct. The extinction at the end of the Guadalupian in Pangea may be related to the middle Permian global regression. However, in South China the end-Maokouan extinction may be related to the eruption of the Omeishan Basalt. A triple-zoned palaeobiogeographical pattern is well expressed by coral diversity.  相似文献   

6.

The stratigraphical and geographical distribution of 851 brachiopod species from 216 genera and 65 families in the Permian of South China are analysed. It is revealed that the brachiopod diversity underwent two sharp falls during the Permian. The first occurred at the end of Maokouan, accompaning the widely recognised, extensive regression across the Maokouan‐Wujiapingian boundary. Fifty‐seven species of 29 genera survived this first major extinction event. The second sharp reduction of brachiopod diversity took place in the later Changhsingian, with only 17 Permian‐type brachiopod species of 12 genera straggling into the earliest Triassic. Detailed stratigraphic analysis shows that more than 90% of the Changhsingian brachiopod species disappeared at different levels in the Changhsingian before the widely perceived end‐Permian ‘mass extinction’ occurred. It is also notable that each of the step‐wise diversity reduction events was apparently heterochronous. In view of the evidence from lithologies, faunal components and geochemical analyses, the two sharp falls of Permian brachiopod diversity in South China are considered to be closely related to multiple interactions of an environmental deterioration caused by large‐scale regressions.  相似文献   

7.
Shu-Zhong Shen  G.R. Shi 《Palaeoworld》2009,18(2-3):152-161
A brachiopod fauna comprising nine species in eight genera from three closely spaced stratigraphic horizons of the same stratigraphic section is described for the first time from the Laibin Limestone in the uppermost part of the Maokou Formation in the Guadalupian/Lopingian (G/L) GSSP section at Penglaitan, Guangxi Autonomous Region, South China. The brachiopod assemblages are bracketed between two conodont zones: Jinogondolella xuanhanensis Zone below and Jinogondolella granti Zone above and, therefore, they can be safely assigned to the latest Capitanian in age. However, all but one of the nine brachiopod species from the Laibin Limestone carry strong early Lopingian (Wuchiapingian) aspect. Thus, the discovery of this brachiopod fauna not only suggests that some Lopingian brachiopod species had already appeared in the late Guadalupian (Capitanian); more importantly, it has also highlighted the fact that both the previously noted pre-Lopingian life crisis (or end-Guadalupian or Middle Permian mass extinction) and Lopingian recovery/radiation actually occurred in late Capitanian times, sometime before the G/L chronostratigraphic boundary. So far, the Penglaitan GSSP section provides the highest-resolution disappearance patterns of different fossil groups around the G/L boundary.  相似文献   

8.
《Palaeoworld》2015,24(3):263-276
This paper documents smaller foraminifers from the Maokou Formation (Guadalupian) at the Tieqiao section in Laibin area, South China. The assemblage of smaller foraminifers reported herein consists of 69 species of 42 genera. Although the Maokou Formation of this section was deposited in a relatively deep-water environment, smaller foraminifers are diverse and abundant, especially in debris flow deposits and thin turbidite beds. This fauna bears most similarity with coeval foraminiferal assemblages from the other Palaeotethyan regions. There is a sharp decrease in the diversity and abundance of smaller foraminifers at the lithological boundary between the Maokou and Heshan formations. An overwhelming majority of genera of smaller foraminifers that occur in the Maokou Formation at this section can be found in the Lopingian strata of South China. The study of smaller foraminiferal fauna of the Guadalupian at the Tieqiao section indicates a much less pronounced effect of the pre-Lopingian crisis on smaller foraminifers.  相似文献   

9.
Recovery from the most profound mass extinction of all time   总被引:4,自引:0,他引:4  
The end-Permian mass extinction, 251 million years (Myr) ago, was the most devastating ecological event of all time, and it was exacerbated by two earlier events at the beginning and end of the Guadalupian, 270 and 260 Myr ago. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. Disaster taxa, such as Lystrosaurus, insinuated themselves into almost every corner of the sparsely populated landscape in the earliest Triassic, and a quick taxonomic recovery apparently occurred on a global scale. However, close study of ecosystem evolution shows that true ecological recovery was slower. After the end-Guadalupian event, faunas began rebuilding complex trophic structures and refilling guilds, but were hit again by the end-Permian event. Taxonomic diversity at the alpha (community) level did not recover to pre-extinction levels; it reached only a low plateau after each pulse and continued low into the Late Triassic. Our data showed that though there was an initial rise in cosmopolitanism after the extinction pulses, large drops subsequently occurred and, counter-intuitively, a surprisingly low level of cosmopolitanism was sustained through the Early and Middle Triassic.  相似文献   

10.
《Palaeoworld》2016,25(4):508-518
The global palaeobiogeographic distributions of two resembling genera, Neochonetes and Fusichonetes (Brachiopoda), from the Carboniferous to Griesbachian are analysed. This analysis provides insight into the biotic response of two related genera to changing palaeoclimate, regional tectonics, and environmental crises. Neochonetes originated in the equatorial area in the Mississippian, and it mostly retained this position during the peak of the glaciation in the Carboniferous–Permian ice age (namely in the Pennsylvanian). Neochonetes then dispersed globally during the Cisuralian when the climate became warmer and the ice sheet started to retreat. In the Guadalupian and Lopingian, following the closure of the Ural seaway at the end of the Cisuralian and the regression at the end-Guadalupian, Neochonetes almost disappeared in the western part of Gondwana. Subsequently during the Lopingian the genus retracted to the middle- and low-latitude Palaeo-Tethys and Tethys. In comparison, Fusichonetes originated in the equatorial area in the late Guadalupian and was still present in that area in the Lopingian. Both genera occurred only in South China in the Griesbachian. It is inferred that this could be related, not only to the deteriorated palaeoenvironmental conditions (e.g., anoxia, global warming) leading up to the extinction of most of the Neochonetes and Fusichonetes species in other areas, but also to the better physiological adaptation of the smaller shells of Neochonetes and Fusichonetes species in South China.  相似文献   

11.
Abstract:  The giant bivalve Lucina megameris Dall, 1901 , from the late Eocene White Limestone Group of Jamaica and by far the largest known species of the family Lucinidae, is placed in a new genus Superlucina . Apart from its large size, with a shell height exceeding 310 mm, it is distinguished from other genera, such as Pseudomiltha and Eomiltha by external shell characters and the extremely long and narrow, anterior adductor muscle scar. Features preserved on internal moulds suggest that, in common with living Lucinidae, S. megameris was chemosymbiotic with sulphide – oxidizing bacteria housed in the gills. Palaeoenvironmental evidence suggests a habitat in oligotrophic, shallow waters, probably in seagrass beds, with an associated molluscan fauna including large cardiids that may have been photosymbiotic. Superlucina is considerably larger than any living lucinid that range in size from 3 to 150 mm with most encompassed within 5–30 mm. From the Jurassic onwards, a few other large lucinids are known from cold seep sites, with several other records from possible shallow water seagrass beds.  相似文献   

12.
We analysed field-collected quantitative data of benthic marine molluscs across the Cretaceous–Palaeogene boundary in Patagonia to identify patterns and processes of biodiversity reconstruction after the end-Cretaceous mass extinction. We contrast diversity dynamics from nearshore environments with those from offshore environments. In both settings, Early Palaeogene (Danian) assemblages are strongly dominated by surviving lineages, many of which changed their relative abundance from being rare before the extinction event to becoming the new dominant forms. Only a few of the species in the Danian assemblages were newly evolved. In offshore environments, however, two newly evolved Danian bivalve species attained ecological dominance by replacing two ecologically equivalent species that disappeared at the end of the Cretaceous. In both settings, the total number of Danian genera at a locality remained below the total number of late Cretaceous (Maastrichtian) genera at that locality. We suggest that biotic interactions, in particular incumbency effects, suppressed post-extinction diversity and prevented the compensation of diversity loss by originating and invading taxa. Contrary to the total number of genera at localities, diversity at the level of individual fossiliferous horizons before and after the boundary is indistinguishable in offshore environments. This indicates an evolutionary rapid rebound to pre-extinction values within less than ca 0.5 million years. In nearshore environments, by contrast, diversity of fossiliferous horizons was reduced in the Danian, and this lowered diversity lasted for the entire studied post-extinction interval. In this heterogeneous environment, low connectivity among populations may have retarded the recolonisation of nearshore habitats by survivors.  相似文献   

13.
A new genus, Meishanorhynchia , is proposed based on new material from the Lower Triassic of the Meishan section, South China. It is of a late Griesbachian age based on both associated biozones (ammonoids and bivalves) and radiometric dates of the intercalated volcanic ash beds. Comparison with both Palaeozoic and Mesozoic–Cenozoic-related genera suggests that it may represent the first radiation of progenitor brachiopods in the aftermath of the end-Permian extinction. The lowest brachiopod horizon that contains the genus is estimated to be about 250.1 ± 0.3 Ma. This implies that the initial stage of recovery of Brachiopoda in the Early Triassic was probably about 1.3 ± 0.3 myr after the major pulse of the end-Permian mass extinction (dated as 251.4 ± 0.3 Ma). This is in agreement with Hallam's expectancy that biotic recovery typically begins within one million years or so of major mass extinctions, in contrast to current views on the end-Permian extinction event which propose that the recovery of most if not all biotic groups in the Early Triassic was severely delayed and only began about five million years after the end-Permian extinction.  相似文献   

14.
Based on the quantitative community analysis using species‐level identifications, we track the restoration of benthic ecosystems after the end‐Permian mass extinction throughout the Lower Triassic of the western USA. New data on the palaeoecology of the Thaynes Group and Sinbad Formation are provided, which fill a gap between the recently studied palaeoecology of the Griesbachian–Dienerian Dinwoody Formation and the Spathian Virgin Formation. In the Sinbad Formation and Thaynes Group, 17 species (12 genera) of bivalves, 7 species and genera of gastropods and 2 species and genera of brachiopods are recognized. The new bivalve genus Confusionella (Pteriidae) is described. A comprehensive review of the whole Lower Triassic succession of benthic ecosystems of the western USA indicates that mid‐ and inner shelf environments show incipient recovery signals around the Griesbachian–Dienerian transition, during the Smithian and, most profound, during the early Spathian. Ecological data from youngest strata of the Dinwoody Formation as well as stratigraphic ranges of species suggest that the late Dienerian was likely a time interval of environmental stress for benthic ecosystems. Despite some evidence for short‐term environmental disturbances (e.g. shift of dominant taxa, transient drop in alpha‐diversity) during the Smithian–Spathian transition, benthic ecosystems did not show any notable taxonomic turnover at that time, in contrast to the major crisis that affected ammonoids and conodonts. Whereas alpha‐diversity of benthic communities generally increased throughout the Early Triassic, beta‐diversity remained low, which reflects a persistently wide environmental range of benthic species. This observation is in accordance with a recently proposed model that predicts a time lag between increasing within‐habitat diversity (alpha‐diversity) and the onset of taxonomic differentiation between habitats (beta‐diversity) during biotic recoveries from mass extinction events. The observation that beta‐diversity had not significantly increased during the Early Triassic might also provide an explanation for the comparably sluggish increase in benthic diversity during that time, which has previously been attributed to persistent environmental stress.  相似文献   

15.
The relationship between diversity of large trees and altitude was investigated in a Tanzanian tropical rain forest. In total, 231 samples of 20 trees of ≥ 20 cm d.b.h. from the East and West Usambara mountains, covering an elevation range from 280 m to 2180 m a.s.l., were analysed. An ordination demonstrated a constant turnover of species, genera, family and orders with elevation. There were no obvious zones or discontinuities. There was no decline in plot richness with respect to altitude for species, genera or orders. Family richness was shown to increase with altitude. A measure of genetic diversity, the avalanche index, was calculated for each plot to investigate the effect of incorporating phylogenetic relatedness of individuals into the diversity measure. Distances between taxa were extracted from a recent molecular phylogeny of the angiosperms. Incorporation of phylogenetic diversity at family level enhanced the positive correlation between plot diversity and altitude.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 149 , 217–228.  相似文献   

16.
Body shape is predicted to differ among species for functional reasons and in relation to environmental niche and phylogenetic history. We quantified morphological differences in shape and size among 98.5% of the 129 species and all 21 genera of the Australo‐Papuan endemic myobatrachid frogs to test the hypothesis that habitat type predicts body shape in this radiation. We tested this hypothesis in a phylogenetic context at two taxonomic levels: across the entire radiation and within the four largest genera. Thirty‐four external measurements were taken on 623 museum specimens representing 127 species. Data for seven key environmental variables relevant to anurans were assembled for all Australian‐distributed species based on species' distributions and 131,306 locality records. The Australo‐Papuan myobatrachid radiation showed high diversity in adult body size, ranging from minute (15 mm snout–vent length) to very large species (92 mm), and shape, particularly sin relative limb length. Five main morphological and environmental summary variables displayed strong phylogenetic signal. There was no clear relationship between body size and environmental niche, and this result persisted following phylogenetic correction. For most species, there was a better match between environment/habitat and body shape, but this relationship did not persist following phylogenetic correction. At a broad level, species fell into three broad groups based on environmental niche and body shape: 1) species in wet habitats with relatively long limbs, 2) species in arid environments with relatively short limbs (many of which are forward or backward burrowers) and 3) habitat generalist species with a conservative body shape. However, these patterns were not repeated within the four largest genera ? Crinia, Limnodynastes, Pseudophryne and Uperoleia. Each of these genera displayed a highly conservative anuran body shape, yet individual species were distributed across the full spectrum of Australian environments. Our results suggest that phylogenetic legacy is important in the evolution of body size and shape in Australian anurans, but also that the conservative body plan of many frogs works well in a wide variety of habitats.  相似文献   

17.
Abstract:  The modern study of fossil crinoids began with J. S. Miller who, in 1821, described specimens from southern England, nearby Wales and other regions, and named several common Early Carboniferous genera. Later, in 1950–60, James Wright monographed all known Early Carboniferous crinoids from the British Isles. In spite of such previous scrutiny, we recognize here two new genera among species already described: Glamorganocrinus gen. nov. (type species: Ophiurocrinus gowerensis Wright, 1960) from South Wales and Mendipocrinus gen. nov. (type species: Poteriocrinus latifrons Austin and Austin, 1847) from southern England. These new genera increase the number of advanced cladid genera in the Ivorian Substage of the Tournaisian in western Europe to 18, and the total number of crinoid genera to 36. A review of species assigned to Mespilocrinus has led to the recognition of M. granulifer De Koninck and LeHon, 1854 as a nomen dubium. A new species of Mespilocrinus , M. wrighti sp. nov., is described from the Ivorian of South Wales; this is the most highly derived species of the genus, as based on a phylogenetic analysis including ten species and 13 characters, with Pycnosaccus as the outgroup. A single, well-ordered tree resulted from this analysis. Interpretation of this tree suggests that the centre of evolution for Mespilocrinus was North America, where three species appeared during the Kinderhookian (early Tournaisian), rapidly achieving morphological disparity within the genus. This radiation event was part of the overall explosive radiation of crinoids following the Late Devonian mass extinction event when crinoid diversity was at a global minimum during the Frasnian. Recovery began during the Famennian, followed by an explosive radiation in the Tournaisian.  相似文献   

18.
Abstract: In the early Late Devonian, terminal Frasnian proetid trilobites have previously only been known from Europe and North Africa. For the first time, a rich fauna of late Frasnian proetids is described from the Virgin Hills Formation, Canning Basin, Western Australia. Seventeen species in six genera are described, of which three are new: Rudybole gen. nov., Palpebralina gen. nov. and Canningbole gen. nov. A new subgenus, Chlupaciparia (Australoparia) subgen. nov. is also described. Fourteen of the species are new: Palpebralia initialis sp. nov., P. pustulata sp. nov., ?P. sp. nov. A, Rudybole depressa sp. nov., Palpebralina pseudopalpebralis sp. nov. (comprising the subspecies P. pseudopalpebralis pseudopalpebralis subsp. nov. and P. pseudopalpebralis ultima subsp. nov.), P. minor sp. nov., P. ocellifer sp. nov., Canningbole latimargo sp. nov., C. henwoodorum sp. nov., C. macromma sp. nov., Pteroparia extrema sp. nov., Chlupaciparia (Chlupaciparia) planiops sp. nov., Chlupaciparia (Australoparia) australis sp. nov. and C. (Australoparia) lata sp. nov. The subspecies Rudybole adorfensis angusta subsp. nov. is also described. The proetids range through conodont Zones 11–13b and terminate at the Upper Kellwasser Event, which marks the terminal Frasnian mass extinction event. Three of the six proetid lineages, Palpebralia, Canningbole and Pteroparia, show evolutionary trends of eye reduction. Two of the remaining lineages, Rudybole and Palpebralina, consist exclusively of blind taxa. The last, Chlupaciparia, also comprises forms with reduced eyes. The proetids show a stepped pattern of extinction during the late Frasnian, which correlate with two Kellwasser biocrises documented in European/North African Frasnian sections. The highest diversity preceded the Lower Kellwasser event that occurred at the end of conodont Zone 12 and saw the extinction of all species present in that zone. However, only one genus, Pteroparia, locally became extinct. A major higher‐level taxonomic mass extinction at the top of Zone 13b initiated the Upper Kellwasser extinction event. This included extinction at the generic level, with all five remaining genera becoming extinct, and at the family level, with the loss of the Tropidocoryphidae.  相似文献   

19.
Guadalupian–Lopingian sedimentary rocks are widely distributed in accretionary complexes in Japan, but the Guadalupian–Lopingian boundary (G–LB) is not well documented from these pelagic sediments. To identify the G–LB and to better correlate an extinction event that occurred around the Guadalupian–Lopingian boundary, we examined the conodont biostratigraphy from a Permian pelagic chert sequence in the Gujo-hachiman section, Gifu, southwest Japan. Age-diagnostic conodonts, including Clarkina postbitteri postbitteri, were found in this section. The biostratigraphic occurrences of these age-diagnostic conodonts can pinpoint the “G–L transitional zone” in the Gujo-hachiman section by comparison with well-studied sections from south China, including the GSSP section. The transitional zone was recognized by the first occurrence horizons of both Clarkina postbitteri hongshuiensis and C. p. postbitteri. The G–LB has been placed at or above the first occurrence horizon of the radiolarians Albaillella yamakitai or Albaillella cavitata in previous studies from China and Japan. We detected the first occurrence horizon of A. yamakitai below the base of the “G–L transitional zone,” in the Upper Capitanian. The conodont biostratigraphy is consistent with the radiolarian biostratigraphy in this section, which can be correlated to relevant sections in China.  相似文献   

20.
The extant global Ephemeroptera fauna is represented by over 3,000 described species in 42 families and more than 400 genera. The highest generic diversity occurs in the Neotropics, with a correspondingly high species diversity, while the Palaearctic has the lowest generic diversity, but a high species diversity. Such distribution patterns may relate to how long evolutionary processes have been carrying on in isolation in a bioregion. Over an extended period, there may be extinction of species, but evolution of more genera. Dramatic extinction events such as the K-T mass extinction have affected current mayfly diversity and distribution. Climatic history plays an important role in the rate of speciation in an area, with regions which have been climatically stable over long periods having fewer species per genus, when compared to regions subjected to climatic stresses, such as glaciation. A total of 13 families are endemic to specific bioregions, with eight among them being monospecific. Most of these have restricted distributions which may be the result of them being the relict of a previously more diverse, but presently almost completely extinct family, or may be the consequence of vicariance events, resulting from evolution due to long-term isolation. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号