共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of the sex chromosomes during meiosis in the house shrew, Suncus murinus, shows some interesting features. Both X- and Y-chromosomes are large and biarmed and have huge segments of C-band material in noncentromeric areas. A distinct chiasma is formed between the short arms of the X and Y chromosomes and the heterochromatic regions in the bivalents show desynapsis in the form of a bulge. 相似文献
2.
《Comptes Rendus Palevol》2016,15(7):813-823
The fossil record of the Iberian insectivores forms a subset of those found in central Europe. Comparison of the late early to early late Miocene record of the two areas shows that, particularly during the late Early Miocene, central European taxa have transient occurrences in Spain. Most taxa appear earlier and survive longer in central Europe. A notable exception is the gymnure Galerix, which extirpates earlier in central Europe, except for a transient occurrence in Germany just prior to its extinction. The main period of insectivore migrations is the late middle Miocene, although some of the taxa that enter remain restricted to the coastal areas. Overall, the pattern of distribution in time and space is best explained by the preference of insectivores for humid environments, as were found during the early Miocene and re-appeared at the end of the middle Miocene. 相似文献
3.
4.
The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. 总被引:9,自引:0,他引:9
下载免费PDF全文

Repetitive DNA sequences in the terminal heterochromatin of rye (Secale cereale) chromosomes have consequences for the structural and functional organization of chromosomes. The large-scale genomic organization of these regions was studied using the telomeric repeat from Arabidopsis and clones of three nonhomologous, tandemly repeated, subtelomeric DNA families with complex but contrasting higher order structural organizations. Polymerase chain reaction analysis with a single primer showed a fraction of the repeat units of one family organized in a head-to-head orientation. Such structures suggest evolution of chromosomes by chromatid-type breakage-fusion-bridge cycles. In situ hybridization and pulse field gel electrophoresis showed the order of the repeats and the heterogeneity in the lengths of individual arrays. After Xbal digestion and pulse field gel electrophoresis, the telomeric and two subtelomeric clones showed strong hybridization signals from 40 to 100 kb, with a maximum at 50 to 60 kb. We suggest that these fragments define a basic higher order structure and DNA loop domains of regions of rye chromosomes consisting of arrays of tandemly organized sequences. 相似文献
5.
Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed.Key words: telomeres, subtelomeres, euchromatin, heterochromatin, ChIP, immunolocalizationTelomeric DNA usually contains tandem repeats of a short GC rich motif. The number of repeats and, therefore, the length of telomeres is subject to regulation and influences relevant biological processes like aging and cancer.1–3 In situ hybridization studies have revealed that telomeric repeats are also present at interstitial chromosomal loci.4,5 An analysis of the genome sequence from different eukaryotes indicates that ITSs have a widespread distribution in different model systems including zebrafish, chicken, opossum, mouse, dog, cattle, horse, human, rice, poplar or Arabidopsis (see Fig. 1 for an example; www.ncbi.nlm.nih.gov/mapview). These ITSs have been related to chromosomal aberrations, fragile sites, hot spots for recombination and diseases caused by genomic instability, although their functions remain unknown.6Open in a separate windowFigure 1Distribution of the main telomeric repeat arrays in the genome of several model organisms. These representations have been performed by using the megaBLAST program and the all assemblies genomic databases at NCBI (www.ncbi.nlm.nih.gov/mapview). Searches for homology with 100 tandem telomeric repeats were done using the default parameters except that the expected threshold was set to 10 and the filters were turned off. Chromosomes are represented as vertical bars and numbered at the bottom. The horizontal bars represent the telomeric repeat arrays. Colors indicate the BLAST scores (red ≥200; pink 80–200; green 50–80).Telomeres and ITSs have probably cross talk through evolution. In some instances, ITSs could have been generated by telomeric fusions. Pioneering studies performed by Hermann J. Muller in Drosophila and Barbara McClintock in maize showed that newly formed chromosome ends tend to fuse giving rise to the so-called breakage-fusion-bridge cycle.7,8 This cycle can lead to stable chromosomal reorganizations after healing of the broken ends. In addition, Muller and McClintock found that, unlike these newly formed broken chromosome ends, natural chromosomal ends are quite stable and do not tend to fuse.9 It is currently known that telomere dysfunction due to mutations that cause telomeric shortening or abolish the expression of certain telomeric proteins can lead to telomeric fusions, anaphase bridges and genome reorganizations.1–3,10,11 Therefore, telomeric shortening or alterations of telomeric chromatin structure might be expected to generate ITSs through evolution by promoting telomeric fusions.12 ITSs might also originate through the activity of telomerase during the repair process of double strand breaks or by recombination.13–16 In addition, telomerase activity might lead to the formation of new telomeres by healing of chromosome breaks within internal telomeric repeats and even within other sequences.17–19 This process of healing involves the acquisition of telomeric chromatin structure.DNA folds into two major chromatin organizations inside the cell nucleus: heterochromatin and euchromatin. Heterochromatin is highly condensed in interphase nuclei and is usually associated with repetitive and silent DNA. By contrast, euchromatin has an open conformation and is often related to the capacity to be transcribed. Both kinds of chromatin exhibit defined epigenetic modifications that influence their biochemical behavior. Thus, the study of these epigenetic marks is an issue of major interest.The chromatin structures of telomeres and ITSs might be different. Therefore, they should be studied independently. Chromatin structure analyses are usually performed by immunocytolocalization or by chromatin immunoprecipitation (ChIP).20–23 Special care should be taken when the epigenetic status of telomeres is analyzed by immunocytolocalization. This technique does not allow differentiating between telomeres and subtelomeric regions. Since subtelomeric regions are known to be heterochromatic in many eukaryotic organisms, heterochromatic marks should be immunolocalized at the chromosome ends of these organisms. However, these marks could correspond to subtelomeric regions and not to telomeres.The ChIP technique implies the immunoprecipitation of chromatin with specific antibodies and the further analysis of the immunoprecipitated DNA. DNA sequences immunoprecipitated by a specific antibody are thought to associate in vivo with the feature recognized by this antibody. Whereas the enrichment of single copy sequences in the immunoprecipitated DNA has been usually analyzed by quantitative PCR, the analyses of repetitive DNA sequences have been often performed by hybridization. Thus, multiple telomeric chromatin structure analyses have been performed by hybridizing immunoprecipitated DNA with a telomeric probe. However, these analyses displayed simultaneously the chromatin structures of telomeres and ITSs. High throughput sequencing analyses of the immunoprecipitated DNA might help overcome this problem. Nevertheless, since the reads obtained with these techniques at present are short, it is still difficult to ascertain whether the enrichment of immunoprecipitated telomeric sequences corresponds to telomeres or to ITSs. Third-generation long-read accurate technologies and new algorithms that discriminate between telomeres and ITSs should solve the problem.In principle, the combination of immunocytolocalization and ChIP experiments should help to differentiate between telomeres and ITSs. However, since subtelomeric regions are known to influence telomere function and contain degenerated ITSs, at least in some organisms like humans or Arabidopsis, this may not be necessarily true.6 A specific epigenetic mark might be required for telomere function, found associated with telomeric repeats by ChIP and with the end of chromosomes by immunocytolocalization and still not associate with true telomeres but with subtelomeric regions and ITSs or just with subtelomeric ITSs.An alternative way to analyze the chromatin structure of telomeres by ChIP involves the use of frequently cutting restriction enzymes. The chromatin structures of Arabidopsis telomeres and ITSs have been independently studied by using Tru9I, a restriction enzyme that recognizes the sequence TTAA.24 Since telomeres in Arabidopsis and in other model systems are composed of perfect telomeric repeat arrays, they remain uncut after digestion with Tru9I.25 In contrast, Arabidopsis ITSs are frequently cut because they are composed of short arrays of perfect telomeric repeats interspersed with degenerated repeats.25–28 Thus, when Arabidopsis genomic DNA is digested with Tru9I and hybridized with a telomeric probe, most of the signals corresponding to ITSs disappear.25 The use of Tru9I has made possible to discover that Arabidopsis telomeres exhibit euchromatic features. In contrast, Arabidopsis ITSs and subtelomeric regions are heterochromatic.24 In Arabidopsis, heterochromatin is characterized by cytosine methylation, which can be targeted at CpG, CpNpG or CpNpN residues (where N is any nucleotide), and by H3K9me1,2, H3K27me1,2 and H4K20me1. In turn, Arabidopsis euchromatin is characterized by H3K4me1,2,3, H3K36me1,2,3, H4K20me2,3 and by histones acetylation.29 ChIP experiments processed with Tru9I have revealed that Arabidopsis telomeres have high levels of euchromatic marks (H3K4me2, H3K9 and H4K16 acetylation) and low levels of heterochromatic marks (H3K9me2, H3K27me1 and DNA methylation).24 Therefore, Arabidopsis telomeres exhibit epigenetic modifications characteristic of euchromatin.Different studies in mice, humans or Arabidopsis have reported that telomeres are heterochromatic based on the existence of siRNAs containing telomeric sequences, on the association of telomeric sequences with telomeric and with heterochromatin proteins, on the methylation of telomeric sequences or on the histones modifications associated with telomeric sequences.30–34 However, the experiments presented in those studies addressed simultaneously the chromatin organizations of telomeres and subtelomeric regions or of telomeres and ITSs. Telomeres have also been reported to be heterochromatic based on the existence of the so-called TElomeric Repeat containing RNAs (TERRA), which are present in different eukaryotes.35 At telomeric regions, TERRA are transcribed from subtelomeric promoters towards chromosome ends. Since human subtelomeric TERRA are mostly composed of subtelomeric sequences, with only about 200 bp of telomeric sequences at their 3′ ends, they might be related to subtelomeric heterochromatin formation rather than to the formation of telomeric chromatin. Nevertheless, TERRA interact with human telomeric proteins and influence telomere function. In addition, TERRA might also be related to ITSs heterochromatinization.34,35We believe that the scenario found in Arabidopsis could also be found in other model systems if the chromatin structures of telomeres, subtelomeric regions and ITSs are independently analyzed. Several reports have described the presence of histone H3.3 at mice telomeres.36–39 Since this histone variant has been previously associated with active chromatin, these studies are compatible with a euchromatic organization of telomeres. However, again in these reports, the experiments shown addressed simultaneously the chromatin organization of telomeres and subtelomeric regions or of telomeres and ITSs. In general terms, we believe that a clear distinction between telomeres and ITSs should be established when future ChIP experiments are analyzed. The use of third generation high throughput sequencing technologies or of frequently cutting restriction enzymes might help in this task.As mentioned above, the epigenetic modifications associated with telomeric regions are known to be important for telomere function. These modifications are required to provide genome stability.33 In this context, it will be relevant to ascertain how the function of Arabidopsis telomeres is influenced by their euchromatic marks and by the presence of heterochromatin at subtelomeric regions. 相似文献
6.
Shaymaa Subhi Hussein Katharina Kreskowski Monika Ziegler Elisabeth Klein Ahmed B. Hamid Nadezda Kosyakova Marianne Volleth Thomas Liehr Xiaobo Fan Katja Piaszinski 《Gene》2014
Mosaicism is present in more than 50% of the cases with small supernumerary marker chromosomes (sSMCs) and karyotype 47,XX,+mar/46,XX or 47,XY,+mar/46,XY. Recently we provided first evidence that the mitotic stability of sSMC is dependent on their structure, i.e. their shape. Thus, here we performed a long term in vitro study on 12 selected cell lines from the Else Kröner–Fresenius-sSMC-cellbank (http://ssmc-tl.com/ekf-cellbank.html) to test mitotic sSMC stability systematically. The obtained results showed that inverted duplicated shaped and also the so-called complex sSMCs (group 1) are by far more stable, than centric-minute- or ring-shaped sSMCs (groups 2). Generally speaking, the percentage of cells with group-1-sSMCs remained stable over 90 days of cell culture, while that of group-2-sSMCs in parts dramatically decreased. In one group-2-cell line the sSMC was even lost completely after 30 days of in vitro culture, in others the sSMC was depleted in up to 40% of the cells. Still the highest rate of sSMC loss was recorded during EBV-transformation. Overall, the major difference between groups 1 and 2 was the number of telomeres per sSMC. In group 1 the sSMCs had “original” telomeres at both of their ends; in group 2 the sSMCs had either no, possibly secondary acquired and/or only one original telomere. This absence of protective telomeric sequences in group 2 seems to make sSMC more susceptible for loss during cell division. Still, also a growth advantage of cells without sSMC cannot be neglected entirely. 相似文献
7.
《Epigenetics》2013,8(9):1055-1058
Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed. 相似文献
8.
The function of the structure of DNA in chromosomes 总被引:4,自引:0,他引:4
S Bram 《Biochimie》1972,54(8):1005-1011
9.
The structure of the chromosomes in human primordial oocytes 总被引:3,自引:0,他引:3
Primordial oocytes (oocytes in primordial follicles) from human ovaries aged 51/2 months post conception to 11 3/4 years post partum were examined in: (a) squash preparations of fresh and fixed tissue; (b) histological preparations; and (c) thin sections by electron microscopy, in order to study the structure of the chromosomes. — The light microscope shows that the chromosome consists of a thread bearing numerous fine lateral appendages. Cytochemical tests indicate that the thread contains DNA, and is surrounded by material containing RNA and protein. — The electron microscope shows that there are three main structural components in the chromosome: (i) an axis or core containing at least two longitudinal strands about 200 Å thick; (ii) a surrounding sheath composed of coiled fibrils which form symmetrically arranged columns and loops, and (iii) clusters of large granules which are associated with the outer parts of the sheath. Small nucleoli and other granular bodies are also present. — These observations indicate the presence of lampbrush chromosomes in the human oocyte. The significance of this type of chromosome in mammals is discussed in relation to the differential radiosensitivity of the oocytes, and to the form of chromosomes at the dictyate stage in rodents. 相似文献
10.
Telomeres in Drosophila melanogaster are composed of multiple copies of two retrotransposable elements, HeT-A and TART instead of the short DNA repeats generated by telomerase in most organisms. Transpositions of HeT-A and yield arrays of repeats larger and more irregular than the repeats produced by telomeras; nevertheless, these transpositions are, in principle, equivalent to the telomere-building action of telomerase. Both telomerase and transposition of HeT-A and TART extend chromosomes by RNA-templated addition of specific sequences. We have proposed that HeT-A has evolved from genes encoding telomerase components. Although both HeT-A and TART share some novel features, TART probably has a different origin from HeT-A. HeT-A and TART are clearly identifiable as non-long terminal repeat (non-LTR) retrotransposons. Both telomere elements transpose only to the ends of chromosomes (apparently to any chromosome end in D. melanogaster) and each contains a large segment of untranslated sequence. HeT-A and TART are the first examples of transposable elements with a clear role in chromosome structure. This has interesting implications for the evolution of both chromosomes and transposable elements. The finding also raises the possibility that other transposable elements with bona fide roles in the cell will be detected, not only in Drosophila, but also in other organisms. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
11.
Alexander L. Dounce Subir K. Chanda Philip L. Townes 《Journal of theoretical biology》1973,42(2):275-285
Chromosomal structure has been analyzed from the standpoint of core structure and the relationship between interphase and metaphase chromosomal forms. A possible relationship between prokaryotic and eukaryotic chromosomes has also been proposed. The general structural plan offered is a series of DNA-histone loops extending laterally from a core held together by disulfide bond linkages. The models proposed have been derived from a loop model with core very recently proposed by H. Sobell. A short experimental section of this paper demonstrates that S-S cleaving agents as well as trypsin cause easily observable effects on human metaphase chromosomes. 相似文献
12.
13.
14.
V. A. Nesterenko E. Yu. Loktionova O. A. Burkovsky 《Contemporary Problems of Ecology》2016,9(3):282-289
The complete cycle of the structure transformation of shrew model taxocene in southern Sakhalin was revealed by investigations of 2008–2014. It was shown that in the communities of these animals facultative and obligate dominants are absent and a dominant group is formed every year of common species. There are two main patterns of the taxocene structure: the monodominant type, predominating by the long-clawed shrew at low number of other species, and the polydominant type, in which one of the background species plays a role of codominant at a lower number of long-clawed shrews. It is found out that the dominance structure in shrew taxocene is not closely related to the phase of its quantitative dynamics. 相似文献
15.
N. D. Belyaev V. G. Budker V. A. Dubrovskaya N. B. Khristoljubova E. V. Kiseleva N. M. Matveeva M. A. Sukojan 《Chromosoma》1985,92(3):193-199
In the present paper the interaction of metaphase chromosomes and chromatin with model and natural lipid membranes was studied. It was shown that chromatin and chromosomes are able to form complexes with membranes in the presence of divalent cations. In such complexes, the typical structure of chromosomes is altered. The character of this alteration in chromosomal structure was investigated with the use of electron microscopy and chemical modification with dimethylsulphate (DMS). The latter is possible because, according to the presented data, the condensation of chromatin into chromosomes is associated with a decrease in accessibility of N-3 in adenine (the protection of the minor groove of DNA) to modifications, and with an increased methylation of N-1 in adenine (the disarrangement of the secondary structure of DNA). It was shown that the interaction of chromosomes with liposomes provides various levels of unfolding up to the appearance of chromatin-like structures. The secondary DNA structure of decondensed chromosomes coincides with the secondary structure of chromosomal but not chromatin DNA, whereas the extent of shielding of the minor groove of DNA in such decondensed structures typical for chromatin DNA. It is possible to suggest that the chromosomal decondensation in telophase of mitosis is initiated by the action of a membrane component of the developing nuclear envelope. 相似文献
16.
1. The preparation of isolated chromosomes from liver, kidney, and pancreas has been described. 2. It has been shown that there is no gross cytoplasmic contamination in these preparations. 3. In a microscopic study of isolated chromosomes the same chromosomes have been found in different tissues of the same organism. Since individuality is one of the main characteristics of chromosomes, there can be little doubt that the preparations do, in fact, contain isolated chromosomes. 4. A quantitative study of staining with crystal violet shows that this basic dye competes with histone for the phosphoric acid groups of the DNA in chromosomes. The displacement of histone by protamine has been demonstrated. 5. Preparation of histone-free chromosomes has been described. Removal of histone does not affect the microscopic appearance of chromosomes. 6. The non-histone or residual protein has been prepared from histone-free chromosomes. The quantity of residual protein in a preparation of chromosomes is correlated with the amount of cytoplasm in the cells from which the chromosomes were prepared. 7. The microscopic appearance of chromosomes depends upon the association of DNA with residual protein. 8. Evidence has been given that in a chromosome there are two DNA-containing nucleoproteins; in one DNA is combined with histone, and in the other it is combined with residual protein. 相似文献
17.
18.
González-Sánchez M Chiavarino M Jiménez G Manzanero S Rosato M Puertas MJ 《Cytogenetic and genome research》2004,106(2-4):386-393
Rye B chromosomes (Bs) have strong parasitic effects on fertility. B carrying plants are less fertile than 0B ones, whereas the Bs have no significant effects on plant vigour. On the other hand, it has been reported that B transmission is under genetic control in such a way that H line plants transmit the Bs at high frequency, whereas the Bs in the low B transmission rate line (L) fail to pair at metaphase I and are frequently lost. In the present work we analyse variables affecting vigour and fertility considering not only the number of Bs of each plant, but also its H or L status and the B number of its maternal parent. Our results show that the Bs not only decrease female fertility of the B carrier, but the fertility of its progeny, with the exception of 0B plants coming from a 4B mother, which are the most fertile. In this way B chromosomes can be considered as a selective factor. Pollen abortion was higher in B carriers, in the progeny of B carriers and in H plants, but 4B plants coming from B carrying mothers produce less aborted pollen, indicating that a high B number is more deleterious if it is transmitted in the pollen grains. A similar result was obtained for endosperm quality estimated as grain weight, because it is negatively influenced by the Bs in 4B plants coming from a 0B mother. H plants were always less fertile than L ones, indicating that alleles increasing the loss of Bs in the L line will be probably selected as a defence of the A genome against the invasive Bs of the H line. Flower number is not affected by the Bs. 相似文献
19.
N. S. Zhdanova Y. I. Rogozina Y. M. Minina P. M. Borodin N. B. Rubtsov 《Cell and Tissue Biology》2009,3(4):323-329
Recently, we displayed an Iberian shrew species (Sorex granarius) with telomere structures unusual for mammals. Long telomeres on the short acrocentric arms contain an average of 213 kb
of telomere repeats, whereas the other chromosomal ends have only 3.8 kb (Zhdanova et al., 2005; 2007). However, it is not
clear whether these telomeres are typical for all shrew species or only for S. granarius. S. granarius and common shrew Sorex araneus are sibling species. In this study, using modified Q-FISH we demonstrated that telomeres in S. araneus from various chromosomal races distinguished by their number of metacentrics contain 6.8–15.2 kb of telomeric tracts. The
S. araneus telomere lengths appear to correspond to telomere lengths in the majority of both shrew species and wild mammals, whereas
S. granarius has telomeres with unique or rare structures. Using DNA and RNA high-specific modified probes to telomeric repeats (PNA and
LNA), we showed that interstitial telomeric sites in S. araneus chromosomes contain mainly telomeric DNA and that their localization coincide with some evolutionary breakpoints. Interstitial
telomeric DNA in S. granarius chromosomes was not revealed. Thus, the distribution of telomeric DNA may be significantly different, even in closely related
species whose chromosomes are composed of almost identical chromosomal arms. 相似文献
20.
The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures 总被引:3,自引:6,他引:3
Chih-Hung Huang Yi-Shing Lin Ya-Ling Yang Shu-wen Huang & Carton W. Chen 《Molecular microbiology》1998,28(5):905-916
The chromosomes of the Gram-positive soil bacteria Streptomyces are linear DNA molecules, usually of about 8 Mb, containing a centrally located origin of replication and covalently bound terminal proteins (which are presumably involved in the completion of replication of the telomeres). The ends of the chromosomes contain inverted repeats of variable lengths. The terminal segments of five Streptomyces chromosomes and plasmids were cloned and sequenced. The sequences showed a high degree of conservation in the first 166–168 bp. Beyond the terminal homology, the sequences diverged and did not generally cross-hybridize. The homologous regions contained seven palindromes with a few nucleotide differences. Many of these differences occur in complementary pairs, such that the palindromicity is preserved. Energy-optimized modelling predicted that the 3' strand of the terminal palindromes can form extensive hairpin structures that are similar to the 3' ends of autonomous parvovirus genomes. Most of the putative hairpins have a GCGCAGC sequence at the loop, with the potential to form a stable single C-residue loop closed by a sheared G:A pairing. The similarity between the terminal structures of the Streptomyces replicons and the autonomous parvoviral genomes suggests that they may share some structural and/or replication features. 相似文献