首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of genetic diversity among indigenous rhizobia and its symbiotic effectiveness with soybean cultivar is important for development of knowledge about rhizobial ecology. In India, little is known about the genetic resources and diversity of rhizobia nodulating soybean. Indigenous bradyrhizobia isolated from root nodules of soybean plants, collected from traditional cultivating regions of two states (Madhya Pradesh and Uttar Pradesh) of India, were screened for bacteriophage sensitivity to identify successful broad host range symbiotic effectivity. Of 172 rhizobial isolates, 91 showed sensitivities to eight lytic phages and form ten groups on the basis of sensitivity patterns. The genetic diversity of 23 isolates belonging to different phage groups was assessed along with that of strains USDA123 and USDA94 by the restriction fragment length polymorphism (RFLP) analysis of 16S rDNA, intergenic spacer (IGS) (16S–23S rDNA), and DnaK regions. RFLP analysis of 16S rDNA formed 5 groups, whereas 19 and 9 groups were revealed by IGS and the DnaK genes, respectively. The IGS regions showed many amplified polymorphic bands. Nine isolates which revealed high RFLP polymorphism in the abovementioned regions (16S rRNA, IGS, DnaK) were used for 16S rRNA sequence analyses. The results indicate that taxonomically, all isolates were related to Rhizobium etli, Bradyrhizobium spp., and Bradyrhizobium yuanmingense. The doubling time of isolates varied from 9 h (MPSR155) to 16.2 h (MPSR068) in YM broth. Five isolates which did not show cross infectivity with isolated phage strains were studied for symbiotic efficiency. All isolates showed broad host range symbiotic effectiveness forming effective nodules on Vigna mungo, Vigna radiata, Vigna unguiculata, and Cajanus cajan. The present study provides information on genetic diversity and host range symbiosis of indigenous soybean rhizobia typed by different phages.  相似文献   

2.
Vibrio cholerae isolates recovered from cholera outbreaks in Bhind district of Madhya Pradesh and Delhi, Northern India were characterized. The O1 serogroup isolates from Bhind outbreak were of Inaba serotype whereas both Ogawa and Inaba serotypes were recovered from Delhi. PCR analysis revealed that only O1 serogroup V. cholerae isolates carried the virulence-associated genes like ctxA, tcpA, ace, and zot. Molecular typing by repetitive sequence based ERIC, VCR1, and VC1 PCR’s revealed similar DNA profile for both Inaba and Ogawa serotypes. A discrete VC1-PCR band identified among the El Tor strains had greater similarity (>97%) to the V. cholerae genome sequence and therefore has the potential to be used as a marker for the identification of the V. cholerae strains. Non-O1 strains recovered from Bhind region differed among themselves as well as from that of the O1 isolates. All the O1 serogroup isolates possessed SXT element and were uniformly resistant to the antibiotics nalidixic acid, polymyxin-B, furazolidone, cloxacilin, trimethoprim-sulfamethaxazole, and vibriostatic agent 0129. Inaba strains from both Delhi and Bhind differed from Ogawa strains by their resistance to streptomycin despite sharing similar DNA patterns in all the three rep-PCRs. Though Delhi and Bhind are separate geographical regions in Northern India, Inaba strains from both these places appear to be closely related owing to their similarity in antibiogram and genetic profile.  相似文献   

3.
The phylogeny and taxonomic position of slow-growing Genista tinctoria rhizobia from Poland, Ukraine and England were estimated by comparative 16S rDNA, atpD, and dnaK sequence analyses, PCR-RFLP of 16S rDNA, DNA G + C content, and DNA–DNA hybridization. Each core gene studied placed the G. tinctoria rhizobia in the genus Bradyrhizobium cluster with unequivocal bootstrap support. G. tinctoria symbionts and bradyrhizobial strains shared 96–99% similarity in 16S rDNA sequences. Their similarity for atpD and dnaK sequences was 93–99% and 89–99%, respectively. These data clearly showed that G. tinctoria rhizobia belonged to the genus Bradyrhizobium. 16S rDNA sequence analysis was in good agreement with the results of the PCR-RFLP of the 16S rRNA gene. Although the tested strains formed separate lineages to the reference bradyrhizobia their RFLP 16S rDNA patterns were quite similar. The genomic DNA G + C content of three G. tinctoria rhizobia was in the range from 60.64 to 62.83 mol%. Data for species identification were obtained from DNA–DNA hybridization experiments. G. tinctoria microsymbionts from Poland were classified within Bradyrhizobium japonicum genomospecies based on 56–82% DNA–DNA similarity.  相似文献   

4.
Genetic diversity analysis of Macrophomina phaseolina isolates obtained from different host range and diverse geographical locations in India was carried out using RAPD fingerprinting. Of the thirteen 10-mer random primers used, primer OPB-08 gave the maximum polymorphism and the UPGMA clustering could separate 50 isolates in to ten groups at more than 65% similarity level. The ten clusters correlated well with the geographical locations with exceptions for isolates obtained from Eastern and Western Ghats. There was a segregation of isolates from these two geographical locations in to two clusters thus, distributing 10 genotypes in to eight geographical locations. All the isolates M. phaseolina irrespective of their host and geographical origin, exhibited two representative monomorphic bands at 250 bp and 1 kb, presence of these bands suggests that isolates might have evolved from a common ancestor but due to geographical isolation fallowed by natural selection and genetic drift might have segregated in to subpopulations. Genetic similarity in the pathogenic population reflects the dispersal of single lineage in all locations in India.  相似文献   

5.
Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I–V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.  相似文献   

6.
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host.  相似文献   

7.
Traditional methods of species classification and identification of the organism are based on morphological, physiological, biochemical, developmental and nutritional characteristics. Accurate assignment of taxonomic status to the new biologically active microbial isolates through existing bioinformatics methods is now very essential and also helpful in chemical characterization of the active molecule produced by microorganisms. The bacterial strain M4 (ckm7) was isolated from the pre-treated soil sample collected from the agricultural field of Eastern Uttar Pradesh (U.P.), India and was found to be producing antibacterial and antifungal antibiotics. Taxonomic identification of the isolate belongs to the genus Streptomyces which was done with the help of sequence analysis and later confirmed by biological activity. Sequence comparison study of ckm7 showed 98% identical similarity with 16S rRNA gene sequences of Streptomyces spinichromogenes, Streptomyces triostinicus and Streptomyces capoamus. On the basis of both biological activity and phylogenetic analysis of ckm7, it was concluded that the isolated strain is a new variant of S. triostinicus.  相似文献   

8.
Aim: To study genotypic diversity of isolates of Brochothrix thermosphacta recovered from meat, poultry and fish. Methods and Results: A total of 27 bacteria isolated from 19 samples of meat, poultry and fish were identified phenotypically and genotypically using PCR amplification of 16S‐23S rDNA intergenic transcribed spacer (ITS‐PCR), repetitive sequence‐based PCR (rep‐PCR) and 16S rDNA sequencing. Using ITS‐PCR, all bacteria showed the same DNA profile as the reference strains of Br. thermosphacta, allowing typing of the isolates at species level. Using 16S rDNA sequencing, all isolates were identified, at genus and species level, as Br. thermosphacta. Identification as Br. campestris was observed with a lower, but very close, level of similarity. Rep‐PCR was more discriminatory than ITS‐PCR and allowed differentiation of four subgroups among the isolates. Conclusion: Minor genotypic differences among Br. thermosphacta strains from meat, poultry and fish were observed. Significance and Impact of the Study: A rudimentary exploration of genotypic differences of Br. thermosphacta from meat, poultry and fish resulted in preliminary confirmation of the suitability of ITS‐PCR for typing Br. thermosphacta and confirmed the value of rep‐PCR fingerprinting to discriminate between Br. thermosphacta strains.  相似文献   

9.
采用热处理法从海南省佳西热带雨林土壤中分离到147株芽胞杆菌,并利用16S rDNA PCR-RFLP与序列分析技术对其遗传多样性进行了研究。16S rDNA PCR-RFLP酶切图谱UPGMA聚类分析结果表明,在100%的相似性水平上,这些芽胞杆菌分属13个遗传类群。不同遗传类型代表菌株的16S rRNA基因序列分析结果显示,它们分布在Bacillaceae、Planococcaceae和Paenibacillaceae科的Bacillus、Lysinibacillus、Paucisalibacillus、Bhargavaea和Paenibacillus五个属,其中Bacillus为优势属(占50%);有3株芽胞杆菌的16S rRNA基因序列与数据库中相应模式菌株的最大相似性在98.3%~98.9%之间。结果表明,佳西热带雨林土壤中芽胞杆菌有着较为丰富的遗传多样性。  相似文献   

10.
Soybean-nodulating bradyrhizobia are genetically diverse and are classified into different species. In this study, the genetic diversity of native soybean bradyrhizobia isolated from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal was explored. Soil samples were collected from three different topographical regions with contrasting climates. A local soybean cultivar, Cobb, was used as a trap plant to isolate bradyrhizobia. A total of 24 isolates selected on the basis of their colony morphology were genetically characterized. For each isolate, the full nucleotide sequence of the 16S rRNA gene and ITS region, and partial sequences of the nifD and nodD1 genes were determined. Two lineages were evident in the conserved gene phylogeny; one representing Bradyrhizobium elkanii (71% of isolates), and the other representing Bradyrhizobium japonicum (21%) and Bradyrhizobium yuanmingense (8%). Phylogenetic analyses revealed three novel lineages in the Bradyrhizobium elkanii clade, indicating high levels of genetic diversity among Bradyrhizobium isolates in Nepal. B. japonicum and B. yuanmingense strains were distributed in areas from 2420 to 2660 m above sea level (asl), which were mountain regions with a temperate climate. The B. elkanii clade was distributed in two regions; hill regions ranging from 1512 to 1935 m asl, and mountain regions ranging from 2420 to 2660 m asl. Ten multi-locus genotypes were detected; seven among B. elkanii, two among B. japonicum, and one among B. yuanmingense-related isolates. The results indicated that there was higher species-level diversity of Bradyrhizobium in the temperate region than in the sub-tropical region along the southern slopes of the Himalayan Mountains in Nepal.  相似文献   

11.
The rumen parasite, Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae), is a highly pathogenic trematode parasite of goat (Capra hircus). It sucks blood that causes acute disease like anemia, and severe economic losses occur due to morbidity and mortality of the ruminant infected by these worms. The study of these rumen paramphistomes, their infection, and public health importance remains unclear in India especially in the western part of state Uttar Pradesh (U.P.), Meerut, India, where the goat meat consumption is very high. This paper provides the molecular characterization of G. crumenifer recovered from the rumen of Capra hircus from Meerut, U.P., India by the partial sequence of 28S rDNA. Nucleotide sequence similarity searching on BLAST of 28S rDNA from parasites showed the highest identity with those of G. crumenifer from the same host Capra hircus. This is the first report of molecular identification of G. crumenifer from this part of India.  相似文献   

12.
In this study, bacteria hosted in root nodules of single plants of legume Arachis hypogaea L. (peanut) cv Tegua Runner growing at field were isolated. The collection of nodule isolates included both fast and slow growing strains. Their genetic diversity was assessed in order to identify the more frequently rhizobial strain associated to nodules from single plants. Molecular fingerprinting of 213 nodular isolates indicated heterogeneity, absence of a dominant genotype and, therefore, of a unique strains highly competitive. Efficient nitrogen-fixing isolates were identified as Bradyrhizobium sp. by phylogenetic analysis of the sequences of their 16S rRNA genes. The genetic diversity of 68 peanut nodulating isolates from all the collected plants was also analyzed. Considering their ERIC-PCR profiles, they were grouped in eighteen different OTUs for 60% similarity cut-off. Results obtained in this study indicate that the genetic diversity of rhizobia occupying nodules from single plant is very high, without the presence of a dominant strain. Therefore, the identification of useful peanut rhizobia for agricultural purposes requires strongly the selection, among the diverse population, of a very competitive genotype in combination with a high-symbiotic performance.  相似文献   

13.
We report here that, during periodical surveys of insects inhabiting diverse habitats for the collection of entomopathogenic fungi; a large number of isolates were recovered belonging to seven species, from various regions of Madhya Pradesh and Chhattisgarh forest areas and agricultural fields. The most common entomopathogenic fungi such as Beauveria bassiana, Nomuraea rileyi, Paecilomyces farinosus and Paecilomyces fumosoroseus were found to infect various insect hosts species naturally viz. Hyblaea puera, Eutectona machaeralis, Diachrysia orichalcea, Spodoptera litura, and few new insect hosts of these fungal pathogens among Indian insect population were collected for the first time from Central India, such as beetles of Agrilus species, hairy caterpillars of Lymantria species. The isolation, identification, maintenance and pathogenicity assay of these isolates was performed prior to deposition in culture collection center.  相似文献   

14.
15.
Legume crops in Central India, the main soybean production area of the country, may suffer from yellow mosaic disease caused by the Mungbean yellow mosaic India virus (MYMIV). MYMIV is transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), which is a species complex composed of various genetic groups. This vector species harbors different endosymbionts among regional strains and among individuals. To elucidate fundamental aspects of this virus vector in the state of Madhya Pradesh, the infection status of the symbionts and the virus in whiteflies was studied. A polymerase chain reaction (PCR) survey of the whiteflies collected in Madhya Pradesh found four secondary endosymbionts, Arsenophonus, Hemipteriphilus, Wolbachia, and Cardinium, in addition to the primary endosymbiont Portiera. Arsenophonus and Hemipteriphilus were highly infected but the infection rates of Wolbachia and Cardinium were low. MYMIV was detected in whitefly populations collected from various host plants in Madhya Pradesh. The whitefly populations belonged to the Asia I and II genetic groups; several different Asia II populations were also distributed. Specific relations were not observed among symbiont infection status, virus infection, and the whitefly genetic groups in the populations of Madhya Pradesh, though Cardinium was highly detected in the Asia II-1 group. New primers, which can be used for PCR template validation and for discriminating two phylogenetically close endosymbionts, were designed.  相似文献   

16.
The diversity of thirty-nine isolates from peanut plants growing at fourteen different sites in the Argentinean province of Córdoba was examined by rep-PCR, RFLP of PCR amplified 16S rRNA gene and complete sequencing of ribosomal genes. The genomic analysis of the peanut isolates indicated that each group encompasses heterogeneity among their members, having distinct rep fingerprints and 16S rRNA alleles. Complete sequencing of 16S rRNA demonstrated that native peanut rhizobia from Córdoba soils representative of the slow and fast growers are phylogenetically related to Bradyrhizobium japonicum and Bradyrhizobium sp. and Rhizobium giardinii and R. tropici species, respectively. The nodC gene sequence analysis showed phylogenetic similarity between fast grower peanut symbionts and Rhizobium tropici.  相似文献   

17.
Vigna mungo, Vigna radiata and Vigna unguiculata are important legume crops cultivated in India, but little is known about the genetic resources in native rhizobia that nodulate these species. To identify these bacteria, a core collection of 76 slow-growing isolates was built from root nodules of V. mungo, V. radiata and V. unguiculata plants grown at different sites within three agro-ecological-climatic regions of India. The genetic diversity of the bacterial collection was assessed by restriction fragment length polymorphism (RFLP) analysis of PCR-amplified DNA fragments of the 16S–23S rDNA intergenic spacer (IGS) region, and the symbiotic genes nifH and nodC. One rDNA IGS type grouped 91% of isolates, but more diversity was found at the symbiotic loci (17 symbiotic genotypes). Overall, no host plant specificity was shown, the three host plant species sharing common bradyrhizobial genotypes that represented 62% of the collection. Similarly, the predominant genotypes were found at most sampling sites and in all agro-ecological-climatic regions. Phylogenies inferred from IGS sequencing and multi-locus sequence analysis of the dnaK, glnII and recA genes indicated that all isolates but one were clustered with the Bradyrhizobium yuanmingense species. The nifH phylogeny also grouped the different nif haplotypes within a cluster including B. yuanmingense, except for one infrequent nif haplotype which formed a new lineage within the Bradyrhizobium genus. These results may reflect a long history of co-evolution between B. yuanmingense and Vigna spp. in India, while intra-species polymorphism detected in the symbiotic loci may be linked with the long history of diversification of B. yuanmingense coinciding with that of its host legumes.  相似文献   

18.
In a previous study, we reported our discovery of Acanthamoeba contamination in domestic tap water; in that study, we determined that some Acanthamoeba strains harbor endosymbiotic bacteria, via our molecular characterization by mitochondrial DNA restriction fragment length polymorphism (Mt DNA RFLP). Five (29.4%) among 17 Acanthamoeba isolates contained endosymbionts in their cytoplasm, as demonstrated via orcein staining. In order to estimate their pathogenicity, we conducted a genetic characterization of the endosymbionts in Acanthamoeba isolated from domestic tap water via 16S rDNA sequencing. The endosymbionts of Acanthamoeba sp. KA/WP3 and KA/WP4 evidenced the highest level of similarity, at 97% of the recently published 16S rDNA sequence of the bacterium, Candidatus Amoebophilus asiaticus. The endosymbionts of Acanthamoeba sp. KA/WP8 and KA/WP12 shared a 97% sequence similarity with each other, and were also highly similar to Candidatus Odyssella thessalonicensis, a member of the α-proteobacteria. The endosymbiont of Acanthamoeba sp. KA/WP9 exhibits a high degree of similarity (85-95%) with genus Methylophilus, which is not yet known to harbor any endosymbionts. This is the first report, to the best of our knowledge, to show that Methylophilus spp. can live in the cytoplasm of Acanthamoeba.  相似文献   

19.
Five facultative sulfur chemolithotrophs were isolated from soils to study the diversity of sulfur lithotrophy. Phenotypic characteristics, including sulfur lithotrophic properties and chemotaxonomic features of the isolates, were similar to those of the members of the colorless sulfur bacteria. 16S rDNA sequence analyses rendered placing the isolates to three distinct phylogenetic clusters of -proteobacteria. Three isolates, AS001, AS002, and KCT002, were identified as members of the genus Paracoccus. The strains AS001 and AS002, having identical 16S-rDNA sequence, showed significant 16S rDNA sequence similarity (99.1%) to Paracoccus versutus. The strain KCT002 showed highest (98%) 16S rDNA sequence similarity to P. alcaliphilus and 96% similarity to the pair AS001 and AS002. Isolate KCT001 appeared to be closely related to Pseudaminobacter salicylatoxidans, although sulfur lithotrophy of P. salicylotoxidans is not known. The other isolate, TCK, showed almost identical 16S rDNA (99.9%) sequence with two recently described unclassified chemolithoautotrophic arsenite oxidizing strains. Physiological and chemotaxonomic characteristics and phylogenetic analyses of the five new strains emphasize the need of polyphasic bacterial taxonomy of sulfur lithotrophs.  相似文献   

20.
Purpose

The aim of this study was to estimate the level of genomic and phenotypic diversity as well as the genus and species position of bacterial strains isolated from root nodules of Lembotropis nigricans (family Fabaceae).

Methods

The genomic diversity of studied L. nigricans nodule symbionts was examined by using BOX-PCR and AFLP (amplified fragment length polymorphism) fingerprinting techniques. To assign bacteria to the genus, numerical analysis of phenotypic features and comparative analysis of 16S rDNA sequences were performed. The comparative analysis of combined atpD, dnaK, gyrB, and rpoB gene sequences (multilocus sequence analysis, MLSA) was used to determine the most closely related species to the studied bacteria.

Results

Both BOX-PCR and AFLP techniques revealed a high level of genomic heterogeneity of L. nigricans nodulators. Among 33 studied bacteria, 32 genotypes were delineated by the AFLP method and 27 genotypes were identified by the BOX-PCR fingerprinting. The numerical analysis of 86 phenotypic characteristics of L. nigricans nodule isolates and reference rhizobia showed that studied bacteria belong to the genus Bradyrhizobium. Affiliation of L. nigricans nodule isolates to the genus Bradyrhizobium was supported by comparative analysis of 16S rDNA sequences and the concatenation of atpD, dnaK, gyrB, and rpoB gene sequences. MLSA indicated also that L. nigricans microsymbionts are members of Bradyrhizobium japonicum.

Conclusion

L. nigricans root nodule symbionts are members of Bradyrhizobium japonicum and exhibit high phenotypic and genomic diversity important for their survival in soil.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号