首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the potential of two natural enemies of Heliothis virescens (F.) (Noctuidae) to affect its rate of adaptation to tobacco containing Bacillus thuringiensis Berliner toxin. Larval fitness of two laboratory strains of H. virescens, one adapted to B. thuringiensis toxin and one not adapted, was compared on toxic and nontoxic plants, in the presence of the parasitoid Campoletis sonorensis (Cameron) (Ichneumonidae) or the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson. By exposing larvae to plants and enemies for no more than 24 h, we focussed on the behavioral rather than physiological component of their interaction with toxic plants and natural enemies. Parasitism of H. virescens larvae by C. sonorensis during exposure periods of 1–4 h was lower on toxic plants than nontoxic plants and was lower for nonadapted larvae than for toxin-adapted larvae. Decreased larval feeding damage on toxic versus nontoxic plants, and by nonadapted versus adapted larvae, may explain differences in parasitism, because C. sonorensis locates host larvae using cues from damaged plants. Effects of plant toxicity and larval strain on H. virescens survival were numerically consistent with effects on parasitism, but they were not statistically significant. When mean larval survival is used to estimate fitness of the nonadapted genotype relative to the toxin-adapted genotype, we find that C. sonorensis is expected to delay adaptation to toxic plants. Percent infection by N. rileyi of H. virescens larvae exposed to fungus-treated plants for 24 h was greater when plants were toxic, and was greater for nonadapted larvae than toxin-adapted larvae. There were corresponding decreases in larval survival on toxic compared to nontoxic plants, and of nonadapted compared to adapted larvae. Interaction of effects of plant line and larval strain on survival was significant in the presence of fungus, but not in the absence of fungus, which indicates that the effect of toxic plants on the relative fitness of toxin-adapted and nonadapted larvae was mediated by fungus. As in the interaction with C. sonorensis, behavior of larvae on plants may explain differences in susceptibility to N. rileyi. Because nonadapted larvae moved more than toxin-adapted larvae on toxic plants, nonadapted larvae may have been more likely to encounter a lethal dose of conidia. In contrast with C. sonorensis, N. rileyi, which decreased the fitness of the nonadapted genotype relative to the adapted genotype, is expected to accelerate adaptation to toxic plants.  相似文献   

2.
Selection with Bacillus thuringiensis subsp. kurstaki, which contains CryIA and CryII toxins, caused a >200-fold cross-resistance to CryIF toxin from B. thuringiensis subsp. aizawai in the diamondback moth, Plutella xylostella. CryIE was not toxic, but CryIB was highly toxic to both selected and unselected larvae. The results show that extremely high levels of cross-resistance can be conferred across classes of CryI toxins of B. thuringiensis.  相似文献   

3.
We quantified the tritrophic effect of host plant on the susceptibility of the sweetpotato whitefly Bemisia tabaci (Genn.) to a fungal pathogen in the laboratory. Second-instar whiteflies reared on cucumber, eggplant, tomato and bean plants for six generations were exposed to conidial suspensions of Isaria fumosorosea isolate IF-1106. Our results did not detect differences in response (proportional survival or median lethal time, LT50 days) among insect populations derived from different plants that were treated with 107 conidia/ml. However, at concentrations ≤ 5×106 conidia/ml, whiteflies reared on bean and tomato died significantly more quickly (i.e. LT50 of 4–5 days) compared with cucumber and eggplant reared populations (5–7 days). Bean and tomato-reared populations were also more susceptible to mycosis (LC50 ≈ 6 × 105 conidia/ml) compared with those reared on cucumber (1.9 × 106 conidia/ml) and eggplant (1.5 × 106 conidia/ml). A separate study confirmed that this differential response of whitefly populations to I. fumosorosea was not explained by differences in deposition rate of conidia on leaf surfaces (i.e. a dosage effect). Our findings show that host plants affect the pathogenicity and virulence of a herbivore pathogen, but depend on the rate of exposure (inoculum) applied.  相似文献   

4.
We exposed midgut cells from primary cultures of Heliothis virescens larvae to cell-free previously used medium, the Vaughn X and HyQ SFtrade mark media used for serum-free culture of insect cell lines which do not support H. virescens midgut cells, and to toxin from Bacillus thuringiensis. A statistically significant increase in the percent of dying cells was counted in cell populations in Vaughn X medium. Use of the TUNEL method to detect apoptosis indicated a low rate (7.2%) of apoptosis in control cultures grown in Heliothis medium, an increase to approximately 20% in previously used and HyQ SFtrade mark media, and to approximately 45% of cells remaining after exposure to and initial destruction by B. thuringiensis toxin. Apoptotic nuclei were predominant (approximately 6%) in mature columnar cells in control cultures. Approximately 1% of goblet, stem, and differentiating cells were apoptotic. However, apoptosis rose to 12% in stem and differentiating cells exposed to used and unsuitable medium. B. thuringiensis exposure to toxin for 2-3 days resulted in visible membrane damage and necrosis, causing the death of 84% of the cells as measured by both the TUNEL and Annexin methods. Some of the columnar cells and stem and differentiating cells that remained also contained apoptotic nuclei. Stem and differentiating cells normally replace dying mature cells in the midgut. Thus, exposure of cultures of H. virescens midgut cells to adverse environments such as unsuitable or poisonous media appeared to induce down-regulation of the cell populations by apoptosis.  相似文献   

5.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

6.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

7.
Laboratory and field studies were conducted during 1993 and 1994 to quantify interplant movement of Heliothis virescens (F.) larvae in pure and mixed plantings of cotton, Gossypium hirsutum L., with ('Event 531') and without ('Coker 312') the expression of Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner. Field studies were conducted with neonate, 4-, and 7-d-old larvae placed on 3-plant experimental units and observed at 24, 48, 72, and 96 h after inoculation of larvae. Combining larval movement across observations of neonates, 4-, and 7-d-old larvae, an estimated 52% of the larvae on pure plantings of Coker 312 had moved at least 1 plant by the cumulative time required to reach the age of 10 d. More larvae placed on Event 531 cotton moved to an adjacent plant (13% of the neonates had moved at least 1 plant within 24 h) than those placed on Coker 312 (0% of the neonates had moved at least 1 plant within 24 h). When larvae were placed on Event 531 plants, an estimated 82% of the larvae had moved to an adjacent plant by cumulative age of 10 d. Collectively, these data indicate that movement of larvae from plant to plant increases with larval age and occurs more rapidly for larvae placed on Event 531 cotton than on Coker 312. Previous studies have suggested that resistance to B. thuringiensis could develop more rapidly in insects exposed to seed mixtures of plants with and without endotoxin if larvae move between plants and if an external refuge exists. These data provide evidence of larval movement between plants in seed mixtures.  相似文献   

8.
Abstract.  1. The fungus Neotyphodium lolii forms a symbiotic relationship with its grass host Lolium perenne (perennial ryegrass). The fungus benefits from access to plant nutrients and photosynthate, whereas the plant benefits from acquired chemical defence against herbivory.
2. This study examined the potential for endophyte-mediated plant defences to influence interactions between fall armyworm Spodoptera frugiperda , and the entomopathogenic nematode Steinernema carpocapsae and clarified biological mechanisms underlying the observations made.
3. In laboratory and greenhouse experiments, S. frugiperda larvae were fed endophytic or non-endophytic L. perenne then exposed to S. carpocapsae or injected with the nematodes' symbiotic bacteria Xenorhabdus nematophila .
4. In all instances, S. frugiperda larvae fed endophyte-infected grass suffered significantly lower mortality than those fed non-endophytic plants. Although larvae fed endophyte-infected grass often had significantly lower biomass than those fed uninfected grass, these differences did not account for altered susceptibility to S. carpocapsae .
5. Endophyte-mediated reductions in herbivore susceptibility to the nematode pathogen represent a herbivore adaptation that effectively turns the tables on both plant and natural enemy by reducing the virulence of the nematodes' symbiotic bacteria while expanding the temporal window of herbivory.  相似文献   

9.
The entomopathogenic fungus, Nomuraea rileyi, caused 90.5–100% mortality in fourth-instar larvae of the corn earworm, Helicoverpa armigera, when applied at 107 conidia/ml to corn silks, and leaves of soybean, tomato and chrysanthemum. The LT50 was 5.9–6.7 days. The fifth-instar larvae showed a mortality of 94.6% on soil with 20% water content, and 41.7% on 10% water content when the soil surface was sprayed with 108 conidia/ml suspension. Five fungicides, eight insecticides and nine herbicides, which are commonly used in corn fields, were evaluated for inhibition to conidial germination by a paper disk test. Among them, only two fungicides, viz., maneb and propineb, were highly inhibitory, while insecticides and herbicides examined were not inhibitory to the fungus. Field applications of N. rileyi conidial suspension to neonate larvae were found to be as effective as 40.46% carbofuran (EC) at 800-fold dilution in controlling corn earworm based on marketable ears. It is thus suggested that N. rileyi has potential to be a microbial control agent for this insect.  相似文献   

10.
The Bacillus thuringiensis var. thuringiensis strain 3A produces a proteinaceous parasporal crystal toxic to larvae of a variety of lepidopteran pests including Spodoptera littoralis (Egyptian cotton leaf worm), Heliothis zeae, H. virescens and Boarmia selenaria. By cloning of individual plasmids of B. thuringiensis in Escherichia coli, we localized a gene coding for the delta-endotoxin on the B. thuringiensis plasmid of about 17 kb designated pTN4. Following partial digestion of the B. thuringiensis plasmid pTN4 and cloning into the E. coli pACYC184 plasmid three clones were isolated in which toxin production was detected. One of these hybrid plasmids pTNG43 carried a 1.7-kb insert that hybridized to the 14-kb BamHI DNA fragments of B. thuringiensis var. thuringiensis strains 3A and berliner 1715. This BamHI DNA fragment of strain berliner 1715 has been shown to contain the gene that codes for the toxic protein of the crystal (Klier et al., 1982). No homologous sequences have been found between pTNG33 and the DNA of B. thuringiensis var. entomocidus strain 24, which exhibited insecticidal activity against S. littoralis similar to that of strain 3A.  相似文献   

11.
Laboratory feeding experiments were carried out to study prey-mediated effects of artificial diet containing Bacillus thuringiensis proteins on immature Chrysoperla carnea. Activated Cry1Ab toxin and the protoxins of Cry1Ab and Cry2A were mixed into standard meridic diet for Spodoptera littoralis (Boisduval) larvae at the following concentrations; for Cry1Ab toxin, 25, 50, 100 g g–1 diet were used; for Cry1Ab protoxin, the concentration was doubled (50 g g–1 diet, 100 g g–1 diet and 200 g g–1 diet) to give relative comparable levels of toxin concentration. Cry2A protoxin was incorporated into the meridic diet at one concentration only (100 g g–1 diet). For the untreated control, the equivalent amount of double distilled water was added to the meridic diet. Individual C. carnea larvae were raised on S. littoralis larvae fed with one of the respective treated meridic diets described above. The objectives were to quantify and compare the resulting effects on mortality and development time of C. carnea with those observed in two previous studies investigating prey-mediated effects of transgenic Cry1Ab toxin-producing corn plants and the other studying effects of Cry1Ab toxin fed directly to C. carnea larvae. Mean total immature mortality for chrysopid larvae reared on B. thuringiensis-fed prey was always significantly higher than in the control (26%). Total immature mortality of C. carnea reared on Cry1Ab toxin 100 g g–1 diet-fed prey was highest (78%) and declined with decreasing toxin concentration. Cry1Ab protoxin-exposed C. carnea larvae did not exhibit a dose response. Prey-mediated total mortality of Cry1Ab protoxin-exposed chrysopid larvae was intermediate (46–62%) to Cry1Ab toxin exposed (55–78%) and Cry2A protoxin (47%) exposed C. carnea. In agreement with the previous studies, total development time of C. carnea was not consistently, significantly affected by the Bt-treatments except at the highest Cry1Ab toxin concentration. However, both highest mortality and delayed development of immature C. carnea raised on Cry1Ab toxin 100 g g–1 diet – fed prey may have been confounded with an increased intoxication of S. littoralis larvae that was observed at that concentration. At all other B. thuringiensis protein concentrations S. littoralis was not lethally affected. Comparative analysis of the results of this study with those of the two previous studies revealed that in addition to prey/herbivore by B. thuringiensis interactions, also prey/herbivore by plant interactions exist that contribute to the observed toxicity of B. thuringiensis – fed S. littoralis larvae for C. carnea. These findings demonstrate that tritrophic level studies are necessary to assess the long-term compatibility of insecticidal plants with important natural enemies.  相似文献   

12.
Validation of a feeding disruption bioassay for the detection of resistance to Bacillus thuringiensis toxin and species identification is reported using field strains of Heliothis virescens and Helicoverpa zea collected from the southern United States in 1998. Feeding disruption is measured by a lack of fecal production from larvae exposed to a diagnostic concentration of CryIAc in a blue indicator diet. The bioassay provided rapid (24 h) diagnosis of the species composition of larvae tested and also monitored for the presence of resistance in H. virescens. An additional diagnostic concentration was established for monitoring resistance in H. zea. A probit model was used to compare the fecal production responses of insect strains over a range of CryIAc doses. Probability calculations, derived from our assay results, are also presented to aid in the interpretation of future results from field trials. Integration of the feeding disruption bioassay into integrated pest management programs is discussed.  相似文献   

13.
Insecticidal crystal proteins (delta-endotoxins), CryIA(a) and CryIA(c), from Bacillus thuringiensis are 82% homologous. Despite this homology, CryIA(c) was determined to have 10-fold more insecticidal activity toward Heliothis virescens and Trichoplusia ni than CryIA(a). Reciprocal recombinations between these two genes were performed by the homolog-scanning technique. The resultant mutants had different segments of their primary sequences exchanged. Bioassays with toxin proteins from these mutants revealed that amino acids 335-450 on CryIA(c) are associated with the activity against T. ni, whereas amino acids 335-615 on the same toxin are required to exchange full H. virescens specificity. One chimeric protein toxin, involving residues 450-612 from CryIA(c), demonstrated 30 times more activity against H. virescens than the native parental toxin, indicating that this region plays an important role in H. virescens specificity. The structural integrity of mutant toxin proteins was assessed by treatment with bovine trypsin. All actively toxic proteins formed a 65-kDA trypsin-resistant active toxic core, similar to the parental CryIA(c) toxin, indicating that toxin protein structure was not altered significantly. Contrarily, certain inactive mutant proteins were susceptible to complete protease hydrolysis, indicating that their lack of toxicity may have been due to structural alterations.  相似文献   

14.
To study the molecular basis of differences in the insecticidal spectrum of Bacillus thuringienesis delta-endotoxins, we have performed binding studies with three delta-endotoxins on membrane preparations from larval insect mid-gut. Conditions for a standard binding assay were established through a detailed study of the binding of 125I-labeled Bt2 toxin, a recombinant B. thuringiensis delta-endotoxin, to brush border membrane vesicles of Manduca sexta. The toxins tested (Bt2, Bt3 and Bt73 toxins) are about equally toxic to M. sexta but differ in their toxicity against Heliothis virescens. Equilibrium binding studies revealed saturable, high-affinity binding sites on brush border membrane vesicles of M. sexta and H. virescens. While the affinity of the three toxins was not significantly different on H. virescens vesicles, marked differences in binding site concentration were measured which reflected the differences in in vivo toxicity. Competition experiments revealed heterogeneity in binding sites. For H. virescens, a three-site model was proposed. In M. sexta, one population of binding sites is shared by all three toxins, while another is only recognized by Bt3 toxin. Several other toxins, non-toxic or much less toxic to M. sexta than Bt2 toxin, did not or only marginally displace binding of 125I-labeled Bt2 toxin in this insect. No saturable binding of this toxin was observed to membrane preparations from tissues of several non-susceptible organisms. Together, these data provide new evidence that binding to a specific receptor on the membrane of gut epithelial cells is an important determinant with respect to differences in insecticidal spectrum of B. thuringiensis insecticidal crystal proteins.  相似文献   

15.
莱氏绿僵菌对斜纹夜蛾的致病力及生理效应   总被引:1,自引:0,他引:1  
【目的】测定莱氏绿僵菌Metarhizium rileyi Nr5772菌株对斜纹夜蛾Spodoptera litura幼虫及蛹的致病能力,研究莱氏绿僵菌侵染后在寄主体内的发育及对寄主的生理效应,探讨莱氏绿僵菌的致病机制。【方法】采用浸渍法测定莱氏绿僵菌孢子对斜纹夜蛾3-6龄幼虫及蛹的致死中浓度(LC_(50))和致死中时(LT_(50))。采用微量注射法接种莱氏绿僵菌虫菌体,在不同时间后采集斜纹夜蛾幼虫血淋巴,在显微镜下检查虫菌体的数量、形态及寄主血细胞数量,并用酶标仪测定寄主血淋巴酚氧化酶(Phenoloxidase,PO)的活性。【结果】M.rileyi孢子对3龄斜纹夜蛾幼虫毒力最强,10 d后LC_(50)=3.12×10~6个孢子/mL,龄期越大,致病力越低;孢子浓度为5×10~9个/mL时,对3龄幼虫的致死速度最快,LT_(50)=4.55 d,致死速度随龄期的增大和浓度的降低逐渐减缓;M.rileyi孢子对蛹的致病力远低于对幼虫的致病力。注射接种虫菌体后,64 h内,虫菌体数量在寄主血腔中以幂函数的形式增长,寄主的血细胞数量没有明显的变化;在侵染初期(接种后44 h内),血淋巴PO活性正常;在侵染后期,虫菌体数量不再增加(55-64 h后),逐渐转化为菌丝体,并快速杀死寄主,PO活性受到抑制。【结论】莱氏绿僵菌Nr5772菌株对斜纹夜蛾幼虫有较强的致病力,应在害虫低龄期应用;莱氏绿僵菌在侵染初期对寄主血细胞和血淋巴PO无影响,后期则完全抑制PO活性。  相似文献   

16.
The use of genetically modified (Bt) crops expressing lepidopteran-specific Cry proteins derived from the soil bacterium Bacillus thuringiensis is an effective method to control the polyphagous pest Helicoverpa armigera. As H. armigera potentially develops resistance to Cry proteins, Bt crops should be regarded as one tool in integrated pest management. Therefore, they should be compatible with biological control. Bioassays were conducted to understand the interactions between a Cry2Aa-expressing chickpea line, either a susceptible or a Cry2A-resistant H. armigera strain, and the entomopathogenic fungus Metarhizium anisopliae. In a first concentration-response assay, Cry2A-resistant larvae were more tolerant of M. anisopliae than susceptible larvae, while in a second bioassay, the fungus caused similar mortalities in the two strains fed control chickpea leaves. Thus, resistance to Cry2A did not cause any fitness costs that became visible as increased susceptibility to the fungus. On Bt chickpea leaves, susceptible H. armigera larvae were more sensitive to M. anisopliae than on control leaves. It appeared that sublethal damage induced by the B. thuringiensis toxin enhanced the effectiveness of M. anisopliae. For Cry2A-resistant larvae, the mortalities caused by the fungus were similar when they were fed either food source. To examine which strain would be more likely to be exposed to the fungus, their movements on control and Bt chickpea plants were compared. Movement did not appear to differ among larvae on Bt or conventional chickpeas, as indicated by the number of leaflets damaged per leaf. The findings suggest that Bt chickpeas and M. anisopliae are compatible to control H. armigera.  相似文献   

17.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

18.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

19.
Susceptibility to Cry3Bb1 toxin from Bacillus thuringiensis (Bt) was determined for western corn rootworm, Diabrotica virgifera virgifera LeConte, neonates from both laboratory and field populations collected from across the Corn Belt. Rootworm larvae were exposed to artificial diet treated with increasing Cry3Bb1 concentrations, and mortality and growth inhibition were evaluated after 4-7 d. The range of variation in Bt susceptibility indicated by growth inhibition was similar to that indicated by mortality. Although interpopulation variation in susceptibility was observed, the magnitude of the differences was comparable with the variability observed between generations of the same population. In general, the toxin was not highly toxic to larvae and estimated LC50 and EC50 values were several times higher than those reported for lepidopteran-specific Cry toxins by using similar bioassay techniques. These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among rootworm populations and provide a baseline for estimating potential shifts in susceptibility that might result from selection and exposure to Cry3Bb1-expressing corn hybrids.  相似文献   

20.
? Although a major expectation of coevolutionary theory between plants and herbivores is the occurrence of reciprocal local adaptation, this has remained almost untested. Thus, we evaluated the presence and variation in the patterns of reciprocal local adaptation between an herbivorous insect and its host plant. ? Two four-by-four cross-infestation experiments were performed under similar abiotic conditions. The first one was done under laboratory conditions to estimate herbivore individual performance while the second one was performed in a common garden to simultaneously estimate herbivore population growth rate as well as seed production and plant defenses (resistance and tolerance to herbivory). ? The patterns of population differentiation for the herbivore and the plant were not independent of each other, showing all the possible outcomes from locally adapted to maladapted populations. These results indicate differences in the magnitude of local adaptation. While an association between resistance and herbivore performance was observed, there was no clear pattern between tolerance and herbivore local adaptation. ? Our results demonstrated the occurrence of reciprocal local adaptation following the pattern expected by theory: when the herbivores or the plants were adapted, the other species was non-adapted or even maladapted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号