首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-culturable Vibrio cholerae O139 was detected in microcosms by PCR and fluorescent-antibody (FA) techniques. When survival of V. cholerae O139 in microcosms was assessed by viable counting on culture media, the vibrio became non-culturable after 44 days and remained non-culturable for an additional 7 weeks.  相似文献   

2.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   

3.
Cholera enterotoxin is a major antigenic determinant for virulence of Vibrio cholerae O1 which can enter into a viable but non-culturable (N-C) state, not detectable by conventional culture methods, yet remain capable of producing enterotoxin and potentially pathogenic. PCR was applied in the current study to detect the chilera toxin (ctx) gene of N-C cells, thus eliminating the necessity of culture. Sets of oligonucleotide primers were designed, based on the ctxAB operon of V. cholerae O1, to detect the presence of the ctx gene. DNA from both culturable and N-C cells of V. cholerae O1 was amplified by PCR using sets of primers flanking 302-, 564- and 777-bp fragments of the ctx gene. The PCR method employed was capable of detecting the ctx gene in N-C V. cholerae in aquatic microcosms and in diarrheal stool samples from three patients who had distinct clinical symptoms of cholera but were culture-negative for V. cholerae O1 and non-O1 and enterotoxigenic Escherichia coli. Forty cycles of a two-step reaction (30 s each at 94 and 60°C) were optimal and more time efficient than a three-step PCR described previously. The procedure, from the point of heating microcosms or broth culture samples to observation on gels, requires < 4 h to complete.J.A.K. Hasan, A. Huq, M.A.R. Chowdhury, and R.R. Colwell are with the Department of Microbiology, University of Maryland, College Park, MD, USA. M. Shahabuddin is with the National Institute of Health. Bethesda, MD, USA. L. Loomis is with New Horizons Diagnostics Corporation, Columbia, MD, USA.  相似文献   

4.
Yu F  Qi G  Liu Y  Gao S  Kan B 《Molecular biotechnology》2005,29(3):191-196
A naturally cholera toxin gene negative Vibrio cholerae (O1, E1 Tor, Ogawa) strain, named IEM101, was isolated in China. The human volunteer tests showed that this strain was safe, able to colonize the intestinal mucosa, and able to induce a strong immune response. Also other studies indicated that it was an efficient live vector to deliver heterologous antigens. In this article, a thymidylate synthase gene (thyA)-defined mutant was constructed using homologous recombination. Except for the morphological changes in minimal medium and slightly reduced colonization capacity, mutant strain IEM101-T maintained most of the desirable features as the wild-type strain IEM101 in terms of growth rate and immunogenicity. However, the mutant was more biosafe than its parent strain. In conclusion, IEM101-T may be a promising strain to develop live vaccine candidate of cholera or an attractive vaccine vector to deliver heterologous antigens in vivo.  相似文献   

5.
Many bacterial species are known to become viable but nonculturable (VBNC) under conditions that are unsuitable for growth. In this study, the requirements for resuscitation of VBNC‐state Vibrio cholerae cells were found to change over time. Although VBNC cells could initially be converted to culturable by treatment with catalase or HT‐29 cell extract, they subsequently entered a state that was not convertible to culturable by these factors. However, fluorescence microscopy revealed the presence of live cells in this state, from which VBNC cells were resuscitated by co‐cultivation with HT‐29 human colon adenocarcinoma cells. Ultimately, all cells entered a state from which they could not be resuscitated, even by co‐cultivation with HT‐29. These characteristic changes in VBNC‐state cells were a common feature of strains in both V. cholerae O1 and O139 serogroups. Thus, the VBNC state of V. cholerae is not a single property but continues to change over time.  相似文献   

6.
Survival and tolerance at cold temperatures, the differentially expressed cellular proteins, and cholera toxin (CTX) production were evaluated in Vibrio cholerae O1. Rapid loss of culturability and change to distinct coccoid morphology occurred when cultures of V. cholerae O1 were exposed to 5°C directly from 35°C. Also, cultures of V. cholerae first exposed to 15°C for 2 h and then maintained at 5°C failed to exhibit an adaptive response, instead a rapid loss of viable plate count was noticed. Results from Western blot experiments revealed the absence of a major cold shock protein, CS7.4. Also, a decreased level of CTX was noticed in V. cholerae O1 cultures exposed to 5 or 15°C after first being exposed to 15°C for 2 h, followed by transfer to 5°C. Reduced expression of CTX at cold temperatures, compared to the cultures maintained at 35°C, may be a result of decreased cellular metabolic activity. When V. cholerae O1 cultures were exposed to 15°C for 2 h, elevated expressions of 8, 26 and 194 kDa, and decreased expression of 28 and 183 kDa proteins occurred. It is suggested that these differentially expressed cold-responsive proteins are involved in regulating culturability and conversion to a coccoid cell morphology in V. cholerae O1.  相似文献   

7.
Aim: To demonstrate the presence of culturable and nonculturable viable pathogenic Vibrio cholerae O1 in fresh water environments of a cholera‐endemic region in India. Methods and Results: Conventional culture and ciprofloxacin DFA–DVC were utilized to investigate the existence of V. cholerae O1. We isolated pathogenic culturable V. cholerae O1 from water samples collected from cholera‐affected areas. No culturable V. cholerae O1 was isolated from water and plankton samples from natural fresh water bodies. Ciprofloxacin was used for DFA–DVC as V. cholerae O1 are 100% resistant to nalidixic acid in our region. The viable but nonculturable O1 cells were demonstrated in 2·21 and 40·69% samples from natural water bodies and cholera‐affected areas, respectively. Conclusion: Vibrio cholerae O1 VBNC could be demonstrated using modified DFA–DVC technique. Ciprofloxacin is preferable to nalidixic acid for DVC in view of existing high‐level resistance to nalidixic acid in cholera‐endemic areas. Significance and Impact of the study: We endorse that for public health surveillance, cholera outbreak investigation and disease control water samples in addition to culture should be tested for V. cholerae using DFA–DVC.  相似文献   

8.
Vibrio cholerae O1 and V. cholerae non-O1 strains isolated from environmental samples collected in São Paulo, Brazil, during cholera epidemics and pre-epidemic periods were examined for the presence of toxin genes. V. cholerae O1 strains isolated from clinical samples in Peru and Mexico, and V. cholerae O139 strains from India were also examined for the presence of ctx (cholera toxin gene) and zot (zonula occludens toxin gene) by polymerase chain reaction (PCR). A modified DNA-extraction method applied in this study yielded satisfactory recovery of genomic DNA from vibrios. Results showed that strains of V. cholerae O1 isolated during the preepidemic period were ctx -/zot - whereas strains isolated during the epidemic were ctx +/zot +. All V. cholerae non-O1 strains tested in the study were ctx -/zot -, whereas all V. cholerae O139 strains were ctx +/zot +. Rapid detection of the virulence genes (ctx and zot) can be achieved by PCR and this can serve as an important tool in the epidemiology and surveillance of V. cholerae.  相似文献   

9.
It is well established that the contamination sources of cholera causing bacteria, Vibrio cholerae, are water and food, but little is known about the transmission role of the fomites (surfaces that can carry pathogens) commonly used in households. In the absence of appropriate nutrients or growth conditions on fomites, bacteria have been known to assume a viable but non-culturable (VBNC) state after a given period of time. To investigate whether and when V. cholerae O1 assumes such a state, this study investigated the survival and viable quantification on a range of fomites such as paper, wood, glass, plastic, cloth and several types of metals under laboratory conditions. The fomites were inoculated with an outbreak strain of V. cholerae and its culturability was examined by drop plate count method at 30 min intervals for up to 6 h. For molecular detection, the viable/dead stain ethidium monoazide (EMA) which inhibits amplification of DNA from dead cells was used in combination with real-time polymerase chain reaction (EMA-qPCR) for direct quantitative analyses of viable V. cholerae at 2, 4, 6, 24 h and 7 day time intervals. Results showed that V. cholerae on glass and aluminum surfaces lost culturability within one hour after inoculation but remained culturable on cloth and wood for up to four hours. VBNC V. cholerae on dry fomite surfaces was detected and quantified by EMA-qPCR even 7 days after inoculation. In conclusion, the prolonged survival of V. cholerae on various household fomites may play vital role in cholera transmission and needs to be further investigated.  相似文献   

10.
A rapid and sensitive direct cell semi-nested PCR assay was developed for the detection of viable toxigenic V. cholerae in environmental water samples. The semi-nested PCR assay amplified cholera toxin (ctxA2B) gene present in the toxigenic V. cholerae. The detection sensitivity of direct cell semi-nested PCR was 2 × 103 CFU of V. cholerae whereas direct cell single-step PCR could detect 2 × 104 CFU of V. cholerae. The performance of the assay was evaluated using environmental water samples after spiking with known number of Vibrio cholerae O1. The spiked water samples were filtered through a 0.22 micrometer membrane and the bacteria retained on filters were enriched in alkaline peptone water and then used directly in the PCR assay. The semi-nested PCR procedure coupled with enrichment could detect less than 1 CFU/ml in ground water and sea water whereas 2 CFU/ml and 20 CFU/ml could be detected in pond water and tap water, respectively. The proposed method is simple, faster than the conventional detection assays and can be used for screening of drinking water or environmental water samples for the presence of toxigenic V. cholerae.  相似文献   

11.
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.  相似文献   

12.
In this study we investigated the viable but non-culturable (VBNC) state of Aeromonas hydrophila and its virulence in goldfish. Aeromonas hydrophila cultured in a 0.35% NaCl solution at pH 7.5 and at 25 °C for 50 days showed the VBNC state. In the VBNC state we were unable to detect viable bacteria by the plate count method but we did find 104 cells/ml by the direct viable count microscopical method after staining with fluorescein diacetate and ethidium bromide. The virulence comparison in goldfish showed that bacteria cultured at 25 °C for 1 day in a 0.35% NaCl solution were more virulent than bacteria cultured for 28 days. VBNC bacteria showed lower virulence in goldfish compared to 28-day-cultured bacteria by intraperitoneal injection.The results from the study suggest that A. hydrophila can remain in the aquatic environment for prolonged periods in the VBNC state but those cells are not pathogenic to goldfish.  相似文献   

13.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   

14.
Arbačiauskas  Kestutis 《Hydrobiologia》2001,460(1-3):157-164
Vibrio cholerae is the causative agent of the severe dehydrating diarrheal disease cholera. This bacterium has been detected in many estuaries around the world and the United States. In this study we examine the abundance and distribution of V. cholerae in recreational beach waters and tributaries of Southern California. Water samples were taken from 11 beach locations adjacent to freshwater runoff sources between February 8th and March 1st, 1999. Water samples were also taken from rivers, creeks and coastal wetlands along the Southern California coast between May 19th and June 28th, 1999. In addition to the detection of V. cholerae, environmental parameters including temperature, salinity, coliphage counts, viable heterotrophic plate counts and total bacterial direct counts were also determined to understand the relationships between the presence of V. cholerae and environmental conditions. A direct colony hybridization method using an oligonucleotide probe specific for the 16S–23S intergenic spacer region of V. cholerae, detected V. cholerae in 3 of the 11 beach samples with the highest concentration (60.9 per liter) at the mouth of Malibu Lagoon. V. cholerae and coliphage were not correlated for beach samples, indicating that the presence of V. cholerae is independent of sewage pollution. V. cholerae were detected in all samples taken from rivers, creeks and wetlands of coastal Southern California where salinities were between 1 to 34 parts per thousand (ppt), but was not found at a freshwater sampling site in upper San Juan Creek. The highest density of V. cholerae was found in San Diego Creek with a concentration of 4.25×105 CFU/L. The geographical distribution of V. cholerae was inversely correlated with salinity. High concentrations of V. cholerae were more frequently detected in waters with lower (but above 0) salinity. The results of this study provide insight into the ecology of this aquatic species and are potentially important to the understanding of the epidemiology of cholera on a global scale.  相似文献   

15.
In this study, pulsed-field gel electrophoresis (PFGE) was applied to determine if the Vibrio cholerae O1 strains which reappeared after being temporarily displaced in Calcutta by the O139 serogroup were different from those isolated before the advent of the O139 serogroup. NotI digestion generated a total of 11 different patterns among the 24 strains of V. cholerae randomly selected to represent different time frames. Among the V. cholerae O1 strains isolated after July 1993, 4 PFGE banding patterns designated as H through K were observed with pattern H dominating. Pattern H was distinctly different from all other patterns encountered in this study including patterns A, B and C of V. cholerae O1 El Tor, which dominated before November 1992, and pattern F, which was the dominant V. cholerae O139 pattern. Further, pattern H was also different from the NotI banding patterns of the representative strains of the 4 toxigenic clonal groups of V. cholerae O1 El Tor currently prevailing in different parts of the world. NotI fragments of the new clone of V. cholerae O1 did not hybridize with an O139 specific DNA probe, indicating that there was no O139 genetic material in the new clone of V. cholerae O1. Hybridization data with an O1-specific DNA probe again differentiated between the clones of V. cholerae O1 existing before the genesis of the O139 serogroup and the O1 strains currently prevalent.  相似文献   

16.
Summary Environmental monitoring is important to enable effective resource management and public health protection as well as rapid and accurate identification of Vibrio cholerae in drinking-water sources. Traditional methods employed in identification are laborious, time-consuming and practically not viable for screening of a large number of samples. In this study, a direct cell duplex PCR assay for the detection of viable toxigenic V. cholerae in environmental water samples was developed. In the PCR assay, two gene sequences were amplified together, one of outer membrane protein (ompW), which is species-specific and another of cholera toxin (ctxAB). The detection limit of duplex PCR was 5 × 104 V. cholerae/reaction. Different environmental water samples were artificially spiked with V. cholerae O1 cells and filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly in the duplex PCR assay. The PCR procedure coupled with enrichment could detect as few as 1.2 c.f.u./ml in ground water, 1.2 × 102 c.f.u. ml−1 in sewer water and 1.2 × 103c.f.u. ml−1 in tap water. The assay was successfully applied directly for screening of environmental potable water samples collected from a cholera-affected area. The proposed method is simple and can be used for environmental monitoring of toxigenic as well as non-toxigenic V. cholerae.  相似文献   

17.
Chemical and serological studies were performed with the lipopolysaccharide (LPS) from Vibrio cholerae O144 (O144). The LPS of O144 contained D -glucose, D -galactose, L -glycero-D -manno-heptose, D -fructose, D -quinovosamine (2-amino-2,6-dideoxy-D -gluco-pyranose) and L -perosamine (4-amino-4,6-dideoxy-L -manno-pyranose). The perosamine, a major component sugar of the LPS from O144, was in an L -configuration, as is also the case in the LPS from V. cholerae O76 (O76), in contrast to the D -configuration of the perosamine in the LPS of V. cholerae O1. A structural analysis revealed that the O polysaccharide chain of the LPS from O144 is an α(1 → 2)-linked homopolymer of (R)-(-)-2-hydroxypropionyl-L -perosamine. The serological cross-reactivity between O144 and O76 was clearly revealed by cross-agglutination and cross-agglutinin absorption tests with whole cells, as well as by passive hemolysis tests with sheep red-blood cells that had been sensitized with the LPS from O144 and O76. In contrast, in passive hemolysis tests, the LPS of O144 did not cross-react serologically with the LPSs from other strains such as V. cholerae O1 (Ogawa and Inaba), V. cholerae O140, Vibrio bio-serogroup 1875 (Original and Variant) and Yersinia enterocolitica O9. The LPSs from these strains consist of O polysaccharide chains composed of α(1 → 2)-linked homopolymers of D -perosamine with various N-acyl groups, and they share the Inaba antigen factor C of V. cholerae O1 in common. The results obtained in this study demonstrate that the absolute configuration of the perosamine residue in homopolymers plays a very important role in the expression of the serological specificity of the Inaba antigen factor C of V. cholerae O1.  相似文献   

18.
The adhesive property of toxin-coregulated pilus (TCP) to the human intestine (jejunum), and whether or not TCP mediates the adhesion of Vibrio cholerae 395 organisms to the intestinal epithelium were investigated using visually proving methods. The purified TCP did not agglutinate human erythrocytes nor adhere to the surface of human intestinal epithelium. V. cholerae 395 adhered to the epithelium, but the adhesion was not inhibited by blocking the pili with the Fab fraction of anti-TCP IgG. The organisms adhered to the intestine treated with purified TCP in advance, as well as to the intact intestine. These findings suggest that TCP is not involved in the adhesion of these organisms to the intestinal epithelium.  相似文献   

19.
Culturing and immunofluorescence (FA) methods for detection of Vibrio cholerae O1 in samples collected from the aquatic environment at selected sites in Brazil were compared. Of the samples examined, 90% were positive for V. cholerae O1 by FA but none was positive by culture, although strains of V. cholerae other than O1 strains were readily isolated. Evidence for V. cholerae O1 being autochthonous to the aquatic environment of Brazil is presented. Furthermore, FA methods are recommended for cholera surveillance programmes directed at the natural environment.M.T. Martins is with the Department of Microbiology, I.C.B. II, University of Sao Paulo, Sao Paulo, S.P. CEP 05508, Brazil. P.S. Sanchez and M.I.Z. Sato are with the State Agency for Environmental Control-CETESB, Sao Paulo, S.P. CEP 05459, Brazil. P.R. Brayton and R.R. Colwell are with the Department of Microbiology, University of Maryland, College Park, MD 20742, USA; R.R. Colwell is also with the Center of Marine Biotechnology, Maryland Biotechnology Institute, 600 East Lombard St, Baltimore, MD 21202, USA.  相似文献   

20.
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3–5 million infections worldwide and 28.800–130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号