首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of bioactive peptides and small protein fragments is commonly achieved via solid-phase chemical synthesis. However, such techniques become unviable and prohibitively expensive when the peptides are large (e.g., >30 amino acids) or when isotope labeling is required for NMR studies. Expression and purification of large quantities of unfolded peptides in E. coli have also proved to be difficult even when the desired peptides are carried by fusion proteins such as GST. We have developed a peptide expression system that utilizes a novel fusion protein (SFC120) which is highly expressed and directs the peptides to inclusion bodies, thereby minimizing in-cell proteolysis whilst maintaining high yields of peptide expression. The expressed peptides can be liberated from the carrier protein by CNBr cleavage at engineered methionine sites or through proteolysis by specific proteases for peptides containing methionine residues. In the present systems, we use CNBr, due to the absence of methionine residues in the target peptides, although other cleavage sites can be easily inserted. We report the production of six unfolded protein fragments of different composition and lengths (19 to 48 residues) derived from the virulent effector kinases, Cla4 and Ste20 of Candida albicans. All six peptides were produced with high yields of purified material (30–40 mg/l in LB, 15–20 mg/l in M9 medium), pointing to the general applicability of this expression system for peptide production. The enrichment of these peptides with 15N, 15N/13C and even 15N/13C/2H isotopes is presented allowing speedy assignment of poorly-resolved resonances of flexible peptides.  相似文献   

2.
Growing evidence suggests that the conformational distributions of amino acid residues in unfolded peptides and proteins depend on the nature of the nearest neighbors. To explore whether the underlying interactions would lead to a breakdown of the isolated pair hypothesis of the classical random coil model, we further analyzed the conformational propensities that were recently obtained for the two guest residues (x,y) of GxyG tetrapeptides. We constructed a statistical thermodynamics model that allows for cooperative as well as for anticooperative interactions between adjacent residues adopting either a polyproline II or a β-strand conformation. Our analysis reveals that the nearest-neighbor interactions between most of the central residues in the investigated GxyG peptides are anticooperative. Interaction Gibbs energies are rather large at high temperatures (350 K), at which point many proteins undergo thermal unfolding. At room temperature, these interaction energies are less pronounced. We used the obtained interaction parameter in a Zimm-Bragg/Ising-type approach to calculate the temperature dependence of the ultraviolet circular dichroism (CD) of the MAX3 peptide, which is predominantly built by KV repeats. The agreement between simulation and experimental data was found to be satisfactory. Finally, we analyzed the temperature dependence of the CD and 3J(HNHα) parameters of the amyloid β1–9 fragment. The results of this analysis and a more qualitative consideration of the temperature dependence of denatured proteins probed by CD spectroscopy further corroborate the dominance of anticooperative nearest-neighbor interactions. Generally, our results show that unfolded peptides—and most likely also proteins—exhibit some similarity with antiferromagnetic systems.  相似文献   

3.
Nuclear magnetic resonance spectroscopists are increasingly utilizing chemical shifts to characterize the secondary structure of proteins. The present study addresses the effects that the positively charged amino group at the N-terminus of a peptide has on 1HN and 1HCα chemical shifts along the chain. This information is necessary for interpreting chemical shift data for proteins and/or for peptides that are used as models for protein structure. The chemical shifts for the 1H resonances of four peptides that differ only in the location of their N-terminii are assigned using two-dimensional nmr spectroscopy. The peptides have sequences derived from the β subunit of the glycoprotein hormone human chorionic gonadotropin (hCG-β). Comparison of the 1HN and the 1HCα chemical shifts for residues common to all four peptides reveals downfield shifts for 1HN and the 1HCα resonances within three residues of the N-terminus compared with chemical shifts in the interior of the peptide. The magnitude of the downfield shift is larger for resonances nearer the N-terminus. Quantum mechanical calculations of the 1HN and 1HCα chemical shifts in peptides constructed with six alanine units also predict a significant terminus effect. The calculations agree both qualitatively and quantitatively with the experimental data. The inductive nature of the end effect is confirmed in the calculations by Mulliken population analysis. End effects should be taken into account in determining protein secondary structures from chemical shifts. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The binding capacity of one-hundred-and-seventy-two 8-mer to 11-mer peptides carrying HLA-A24 anchor residues to HLA-A*2402 molecules was analyzed by using a HLA class I stabilization assay. Most (76.2%) of these peptides bound to HLA-A*2402 molecules. These results confirmed previous findings that Tyr and Phe at P2 as well as Phe, Trp, Ile, and Leu at the C-terminus were main anchor residues for HLA-A*2402. Tyr at P2 was a stronger anchor residue than Phe, while bulky aromatic hydrophobic residues Phe and Trp at the C-terminus are stronger anchors than aliphatic hydrophobic residues Ile and Leu. These results were also supported by an analysis using a panel of mutated 9-mer peptides at P2 and P9. Taken together, these results suggest that HLA-A*2402 molecules have deep B- and F-pockets because they favor peptides carrying bulky aromatic hydrophobic residues at P2 and the C-terminus. The affinity of 8-mer peptides was significantly lower than that of 9-mer to 11-mer peptides, while there was no difference in affinity between 9-mer, 10-mer, and 11-mer peptides. The affinity of peptides carrying bulky aromatic hydrophobic residues at the C-terminus was higher than that of peptides carrying aliphatic hydrophobic residues in each of the 8-mer to 11-mer peptides, though the greatest difference in affinity was observed in 11-mer peptides. The strong interaction of side chains of these anchor residues with the corresponding pockets may permit the effective binding of 10-mer and 11-mer peptides to HLA-A*2402 molecules.  相似文献   

5.
Helices, strands and coils in proteins of known three-dimensional structure, corresponding to heptapeptide and large sequences (‘probe’ peptides), were scanned against peptide sequences of variable length, comprising seven or more residues that correspond to a different conformation (‘target’ peptides) in protein crystal structures available from the Protein Data Bank (PDB). Where the ‘probe’ and ‘target’ peptide sequences exactly match, they correspond to ‘chameleon’ sequences in protein structures. We observed ∼548 heptapeptide and large chameleon sequences that included peptides in the coil conformation from 53,794 PDB files that were analyzed. However, after excluding several chameleon peptides based on the quality of protein structure data, redundancy and peptides associated with cloning artifacts, such as, histidine-tags, we observed only ten chameleon peptides in structurally different proteins and the maximum length comprised seven amino acid residues. Our analysis suggests that the quality of protein structure data is important for identifying possibly, the ‘true chameleons’ in PDB. Majority of the chameleon sequences correspond to an entire strand in one protein that is observed as part of helix sequence in another protein. The heptapeptide chameleons are characterized with a high propensity of alanine, leucine and valine amino acid residues. The total hydropathy values range between −11.2 and 22.9, the difference in solvent accessibility between 2.0 Å2 and 373 Å2 units and the difference in total number of residue neighbor contacts between 0 and 7 residues. Our work identifies for the first time heptapeptide and large sequences that correspond to a single complete helix, strand or coil, which adopt entirely different secondary structures in another protein.  相似文献   

6.
The complete amino acid sequence of three acyl-binding/lipid-transfer proteins, AB/LTP I, AB/LTP II and AB/LTP III from germinated rape seeds were determined. AB/LTP I and AB/LTP II consist of 93 residues and the Mr was determined as 9408 by mass spectrometry and calculated as 9406.8 from the sequence. AB/LTP III consists of 92 residues and the Mr was determined as 9424 by mass spectrometry and calculated as 9422.8 from the sequence. The primary structures were determined by automated Edman degradations of the intact proteins and peptides obtained from digestion with trypsin and endoproteinase Asp-N and cyanogen bromide cleavage. Use of 252Cf plasma-desorption mass spectrometry facilitated the identification and verification of peptides.  相似文献   

7.
Human centrosomal proteins show a significant, 3.5 fold, bias to be both unstructured and coiled-coils with respect to generic human proteins, based on results from state of the art bioinformatics tools. We hypothesize that this bias means that these proteins adopt an ensemble of disordered and partially helical conformations, with the latter becoming stabilized when these proteins form complexes. Characterization of the structural properties of 13 peptides from 10 different centrosomal proteins ranging in size from 20 to 61 residues by biophysical methods led us to confirm our hypothesis in most cases. Interestingly, the secondary structure adopted by most of these peptides becomes stabilized at acidic pH and it is concentration dependent. For two of them, PIK3R1453–513 and BRCA11253–1273, we observed not only the stabilization of helical structure through self-association, but also the presence of β-structures linked to the formation of high molecular weight oligomers. These oligomers are the predominant forms detected by CD, but unobservable by liquid state NMR. BRCA11397–1424 and MAP3K11396–441 populate helical structures that can also self-associate at pH 3 through oligomeric species. Four peptides, derived from three proteins, namely CCNA2103–123, BRCA11253–1273, BRCA11397–1424 and PIK3R1453–513, can form intermolecular associations that are concomitant with alpha or beta structure stabilization. The self-phosphorylation previously described for the kinase NEK2 did not lead to any stabilization in the peptide's structure of NEK2303–333, NEK2341–361, and NEK2410–430. Based on these results, obtained from a series of peptides derived from a significant number of different centrosomal proteins, we propose that conformational polymorphism, modulated by intermolecular interactions is a general property of centrosomal proteins.  相似文献   

8.
A novel procedure for isolating peptides which contain methionine is described. It relies upon the reversible increase in charge which occurs upon the alkylation of methionine by iodoacetamide. A digest of the protein is reacted with lodo[14C]acetamide under conditions which direct the reaction exclusively to the methionine residues. In this way, methionine-containing peptides are rendered radioactive and gain one positive charge per methionine simultaneously. The digest is then separated on a cation exchange column, the peptides are located by their radioactivity, and they are separately collected. The carboxyamidomethylation is reversed by thiolysis, which eliminates the extra positive charge which each methionine-containing peptide bore, decreasing their charge selectively. A second chromatographic separation, performed on the same cation exchange column, is sufficient to produce the desired peptides in a high state of purity. Equine myoglobin and bovine ribonuclease were used as models to demonstrate the feasibility of this approach. Methionine-containing tryptic peptides were purified from digests of these proteins in yields which were equivalent to those of previously reported separations. The present procedure, however, is applicable to peptide mixtures of far greater complexity than those which were derived from the model compounds and can be applied with the same success to digests of very large proteins containing many methionine residues.  相似文献   

9.
Transglutaminase (TGase) is an enzyme that catalyzes acyl transfer reactions between primary amines and Gln residues in proteins or peptides. Substrate specificities of TGase, Ca2+-independent microbial transglutaminase (MTGase), and Ca2+-dependent tissue type transglutaminase from guinea pig liver (GTGase) and fish, Red sea bream (Pagrus major), liver (FTGase), for acyl donors were investigated using synthetic peptides containing Gln residues and Gln analogues with different lengths of side chain. MTGase dose not recognize the Gln analogues as a substrate and has strict substrate specificities toward L-Gln. Substrate peptides with a variety of sequences around the Gln residue, GXXQXXG (X=G, A, S, L, V, F, Y, R, N, E, L) were synthesized and used as acyl donors. As an acyl acceptor, the fluorescent reagent monodancyl cadaverine was used and the reactions analyzed with RP-HPLC. Substitution of the C-terminal of a Gln residue with a hydrophobic amino acid accelerated the reaction by GTGase and FTGase. N-terminal substitution of Gln residues had similar effects on the reaction by MTGase.  相似文献   

10.
Two cyclic and branched peptides (PLA and AZU) were synthesized with the aim of reproducing the active site of the blue copper proteins plastocyanin and azurin. Both peptides, designed on the basis of the x-ray structures of Poplar plastocyanin and Alcaligenes denitrificans azurin. contain the same coordinating residues of the parent native proteins. The visible spectra of PLA in the presence of equimolar amount of Cu(II) strongly support the interaction between the peptide and copper(II) ion. The CD titration of AZU with the Hg(II) ion indicates for the formation of two species. [A ZUHg]+ and [A ZUHg2]3+ having binding constants (Keq) of 3.106 and 2–104M?1, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The formation of isoaspartate (isoAsp) from asparaginyl or aspartyl residues is a spontaneous post-translational modification of peptides and proteins. Due to isopeptide bond formation, the structure and possibly function of peptides and proteins is altered. IsoAsp modifications within the peptide chain have been reported for many cytosolic proteins. Amyloid peptides (Aβ) deposited in Alzheimer’s disease may carry an N-terminal isoAsp-modification. Here, we describe a quantitative investigation of isoAsp-formation from N-terminal Asn and Asp using model peptides similar to the Aβ N-terminus. The study is based on a newly developed separation of peptides using capillary electrophoresis (CE). 1H NMR was employed to validate the basic finding of N-terminal isoAsp-formation from Asp and Asn. Thereby, the isomerization of Asn at neutral pH (0.6 day?1, peptide NGEF) is approximately six times faster than that within the peptide chain (AANGEF). The difference in velocity between Asn and Asp isomerization is approximately 50-fold. In contrast to N-terminal Asn, Asp isomerization is significantly accelerated at acidic pH. The kinetic solvent isotope (k D2O/k H2O) effect of 2.46 suggests a rate-limiting proton transfer in isoAsp-formation. The proton inventory is consistent with transfer of one proton in the transition state, supporting the previous notion of rate-limiting deprotonation of the peptide backbone amide during succinimide-intermediate formation. The study provides evidence for a spontaneous N-terminal isoAsp-formation within peptides and might explain the accumulation of N-terminal isoAsp in amyloid deposits.  相似文献   

12.
Summary The photobinding between riboflavin and the Trp residues from human and bovine serum albumins at two pH-dependent protein conformations was studied. At pH 7.0 both proteins showed photo-adduct formation with hyperbolic kinetics. In the bovine serum albumin this is attributed to the different locations of the two Trp residues. In the case of the human serum albumin, which has only one Trp residue, this behaviour may be related to different molecular conformations of the protein, as is also manifest in the iodide quenching experiments. At pH 3.5, the kinetics of the photo-adduct formation were found to be slower and showed a monophasic behaviour. These results are due to the conformational change of these proteins at acidic pH; the Trp residues of both proteins being now located in a more hydrophobic environment. When bovine serum albumin was anaerobically irradiated at pH 7.0 in the presence of14C-riboflavin and then cleaved by CNBr, two peptides were obtained, containing the Trp-134 and Trp-212 residues, respectively. The incorporation of14C-riboflavin in these samples was significantly higher at the level of the peptide containing the Trp-134 residue. Furthermore, it was demonstrated, that the energy transfer from enzymatically generated triplet acetone to riboflavin can also promote the binding of this vitamin to the Trp residues of human and bovine serum albumins.  相似文献   

13.
 HLA-B*3501 and -B*5101 molecules, which belong to the HLA-B5 cross-reactive group, bind peptides carrying similar anchor residues at P2 and the C-terminus, but differences are observed in the preference for a Tyr residue at the C-terminus and the affinity of peptides. A recent study of HLA-B*3501 crystal structure suggested that residue 116 on the floor of the F-pocket determines a preference for anchor residues at the C-terminus. In order to evaluate the role of the residue 116 in the peptide binding to both HLA-B*3501 and HLA-B*5101 molecules, we generated HLA-B*3501 mutant molecules carrying Tyr at residue 116 (B*3501–116Y) and tested the binding of a panel of nonamer peptides to the B*3501–116Y molecules by a stabilization assay with RMA-S transfectants expressing the mutant molecules. The substitution of Tyr for Ser at residue 116 markedly reduced the affinity of nonamer peptides carrying Tyr at P9, while it enhanced that of nonamer peptides carrying Ile and Leu at P9. On the other hand, the affinity of peptides carrying aliphatic hydrophobic residues at P9 to B*3501–116Y molecules was much higher than that to HLA-B*3501 and HLA-B*5101 molecules. These results indicate that residue 116 is critical for the structural difference of the F-pocket between HLA-B*3501 and HLA-B*5101 which determines the C-terminal anchor residues, while leaving other residues which differ between HLA-B*3501 and HLA-B*5101 may be responsible for the low peptide binding property of the latter. Received: 18 April 1997 / Revised: 18 September 1997  相似文献   

14.
Japanese encephalitis virus (JEV) non-structural protein 1 (NS1) contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA), five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues 5AIDITRK11, 72RDELNVL78, 251KSKHNRREGY260, 269DENGIVLD276, and 341DETTLVRS348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.  相似文献   

15.
 The binding of 303 8-mer to 11-mer peptides carrying the anchor residues at P2 and the C-terminus to HLA-B*5101 molecules was examined by a stabilization assay in which peptides were incubated with RMA-S-B*5101 cells at 26 °C for 3 h. Analysis of the binding of these peptides to HLA-B*5101 molecules showed that Pro and Ala at P2, and Ile, Val, and Leu at the C-terminus functioned as anchor residues, while Gly at P2 and Met at the C-terminus were weak anchors. Pro was a stronger anchor residue than Ala at P2, while Ile was the strongest anchor at the C-terminus. Among 8-mer to 11-mer peptides, the 9-mer peptides showed the strongest binding to HLA-B*5101 molecules. This is in contrast to our recent findings that 10-mer and 11-mer peptides bind to HLA-B*3501 molecules as effectively as 9-mer peptides. Since both HLA class I molecules have the same B-pocket and the binding peptides carry the same anchor residues, it is assumed that the structure of the F-pocket may restrict the length of binding peptides. The ability of HLA-B*5101 binding peptides to stabilize the HLA-B*5101 molecules was markedly lower than that of HLA-B*3501 binding peptides to stabilize the HLA-B*3501 molecules. It is known that HLA-B*5101 is a slow assembling molecule, while HLA-B*3501 assembles rapidly. The results imply that the slow assembling of HLA-B*5101 molecules results from the low affinity of peptides to HLA-B*5101 molecules. Received: 14 August 1996 / Revised: 8 October 1996  相似文献   

16.
A significant fraction of the amino acids in proteins are alpha helical in conformation. Alpha helices in globular proteins are short, with an average length of about twelve residues, so that residues at the ends of helices make up an important fraction of all helical residues. In the middle of a helix, H-bonds connect the NH and CO groups of each residue to partners four residues along the chain. At the ends of a helix, the H-bond potential of the main chain remains unfulfilled, and helix capping interactions involving bonds from polar side chains to the NH or CO of the backbone have been proposed and detected. In a study of synthetic helical peptides, we have found that the sequence Ser-Glu-Asp-Glu stabilizes the alpha helix in a series of helical peptides with consensus sequences. Following the report by Harper and Rose, which identifies SerXaaXaaGlu as a member of a class of common motifs at the N termini of alpha helices in proteins that they refer to as “capping boxes,” we have reexamined the side chain–main chain interactions in a varient sequence using 1H NMR, and find that the postulated reciprocal side chain-backbone bonding between the first Ser and last Glu side chains and their peptide NH partners can be resolved: Deletion of two residues N terminal to the Ser-Glu-Asp-Glu sequence in these peptides has no effect on the initiation of helical structure, as defined by two-dimensional (2D) NMR experiments on this variant. Thus the capping box sequence Ser-Glu-Asp-Glu inhibits N terminal fraying of the N terminus of alpha helix in these peptides, and shows the side chain–main chain interactions proposed by Harper and Rose. It thus acts as a helix initiating signal. Since normal a helix cannot propagate beyond the N terminus of this structure, the box acts as a termination signal in this direction as well. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The N-terminal domain of HIV-1 glycoprotein 41?000 (FP; residues 1-23; AVGIGALFLGFLGAAGSTMGARSCONH2) participates in fusion processes underlying virus-cell infection. Here, we use physical techniques to study the secondary conformation of synthetic FP in aqueous, structure-promoting, lipid and biomembrane environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy indicated the following α-helical levels for FP in 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) liposomes∼hexafluoroisopropanol (HFIP)>trifluoroethanol (TFE)>phosphate-buffered saline (PBS). 12C-FTIR spectra also showed disordered FP structures in these environments, along with substantial β-structures for FP in TFE or PBS. In further experiments designed to map secondary conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using a suite of FP peptides labeled with 13C-carbonyl at multiple sites. Combining these 13C-enhanced FTIR results with molecular simulations indicated the following model for FP in HFIP: α-helix (residues 3-16) and random and β-structures (residues 1-2 and residues 17-23). Additional 13C-FTIR analysis indicated a similar conformation for FP in POPG at low peptide loading, except that the α-helix extends over residues 1-16. At low peptide loading in either human erythrocyte ghosts or lipid extracts from ghosts, 13C-FTIR spectroscopy showed α-helical conformations for the central core of FP (residues 5-15); on the other hand, at high peptide loading in ghosts or lipid extracts, the central core of FP assumed an antiparallel β-structure. FP at low loading in ghosts probably inserts deeply as an α-helix into the hydrophobic membrane bilayer, while at higher loading FP primarily associates with ghosts as an aqueous-accessible, β-sheet. In future studies, 13C-FTIR spectroscopy may yield residue-specific conformations for other membrane-bound proteins or peptides, which have been difficult to analyze with more standard methodologies.  相似文献   

18.
X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B-cell differentiation; this incapacitates antibody production in XLA patients, who suffer from recurrent, sometimes lethal, bacterial infections. BTK plays an important role in B-cell development; it interacts with several proteins in the context of signal transduction. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in a patient family. To understand the role of BTK, we studied binding of BTK SH3 domain (aa 216–273, 58 residues) and truncated SH3 domain (216–259, 44 residues) with proline-rich peptides; the first peptide constitutes the SH3 domain of BTK, while the latter peptide lacks 14 amino acid residues of the C terminal. Proline-rich peptides selected from TH domain of BTK and p120cbl were studied. It is known that BTK TH domain binds to SH3 domains of various proteins. We found that BTK SH3 domain binds to peptides of BTK TH domain. This suggests that BTK SH3 and TH domains may associate in inter- or intramolecular fashion, which raises the possibility that the kinase may be regulating its own activity by restricting the availability of both its ligand-binding modules. We also found that truncated SH3 domain binds to BTK TH domain peptide less avidly than does normal SH3 domain. Also, we show that the SH3 and truncated SH3 domains bind to peptide of p120cbl, but the latter domain binds weakly. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context, hence the weaker binding. These results delineate the importance of C terminal in binding of SH3 domains and indicate also that improper folding and the altered binding behavior of mutant BTK SH3 domain likely leads to XLA. Proteins 29:545–552, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The cathepsin B-like proteinase from Helicoverpa armigera (HCB) is involved in the degradation of yolk proteins during embryonic development. In order to gain insight into the substrate specificity of this proteinase, various proteins from animals and plants were tested as substrates. The specific cleavage sites of this enzyme on endopeptide bonds were assayed using bovine serum albumin (BSA) as a substrate. Results showed that BSA was degraded into several fragments, which suggests that HCB cleaves BSA at specific endopeptidyl sites. The amino acid sequences of the BSA derived peptides were determined, revealing cleavage of the bonds between residues Arg81–Glu82, Val423–Glu424 and Gly430–Lys431. This suggests that the minimum requirement for a scissile bond to be recognized by HCB is the presence of an ionic amino acid at the P1 position and the P1 position can vary. These observations suggest that HCB cleaves bonds at the N-terminal side of ionic amino acid residues giving HCB a wide range of substrates, though other factors dictating the substrate specificity of this enzyme remains to be clarified. Our results provide new evidence that HCB functions as an endopeptidase on some proteins.  相似文献   

20.
High-resolution 1H-nmr analyses are presented for partially modified retro-inverso derivatives of peptides with emphasis on enkephalins. Studies in DMSO-d6 reveal the unique as well as common characteristics of the non-amino acid residues incorporated into these modified peptides. The complete assignment of 1,1-diaminoalkyl and malonyl, as well as of amino acid, residues provides the basis for the exploration of the conformational features induced in peptides by such topochemical modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号