首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The integral membrane protein responsible for the transport and phosphorylation of D-mannitol in Escherichia coli, the mannitol-specific Enzyme II of the phosphotransferase system (Mr = 60,000), has been purified to apparent homogeneity using a modification of a previously published procedure (Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr. (1979) J. Biol. Chem. 254, 249-252). The purified enzyme was dependent on Lubrol PX and phospholipid for maximal activity. It catalyzed both the phosphoenolpyruvate- and the mannitol 1-phosphate-dependent phosphorylation of D-mannitol with high specificity for the accepting sugar and the phosphoryl donor. Both mannitol and mannitol 1-phosphate gave strong substrate inhibition at neutral pH in the transphosphorylation reaction catalyzed by the purified mannitol Enzyme II, while no substrate inhibition by mannitol was observed for the phosphoenolpyruvate-dependent reaction. The purified enzyme did not catalyze hydrolysis of mannitol 1-phosphate, a product of both reactions. Antibody directed against the mannitol Enzyme II inhibited the phosphoenolpyruvate-dependent activity to a greater extent than the transphosphorylation activity. Limited proteolysis with trypsin rapidly inactivated both purified and membrane-bound mannitol Enzyme II, and the purified protein was concomitantly cleaved into fragments with apparent molecular weights of about 29,000. These results show that although the mannitol Enzyme II is an integral membrane protein, a considerable portion of its polypeptide chain must also extend into a hydrophilic environment, presumably the cytoplasm.  相似文献   

2.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

3.
The sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose Enzyme II complex of the phosphotransferase system has been analyzed kinetically. Initial rates of phosphoryl transfer from glucose-6-P to methyl alpha-glucopyranoside were determined with butanol/urea-extracted membranes from Salmonella typhimurium strains. The kinetic mechanism was shown to be Bi-Bi Sequential, indicating that the Enzyme II possesses nonoverlapping binding sites for sugar and sugar phosphate. Binding of the two substrates appears to occur in a positively cooperative fashion. A mutant with a defective glucose Enzyme II was isolated which transported methyl alpha-glucoside and glucose with reduced maximal velocities and higher Km values. In vitro kinetic studies of the transphosphorylation reaction catalyzed by the mutant enzyme showed a decrease in maximal velocity and increases in the Km values for both the sugar and sugar phosphate substrates. These results are consistent with the conclusion that a single Enzyme II complex catalyzes both transport and transphosphorylation of its sugar substrates.  相似文献   

4.
Purified mannitol-specific enzyme II (EIImtl), in the presence of the detergent Lubrol, catalyzes the phosphorylation of mannitol from P-HPr via a classical ping-pong mechanism involving the participation of a phosphorylated EIImtl intermediate. This intermediate has been demonstrated by using radioactive phosphoenolpyruvate. Upon addition of mannitol, at least 80% of the enzyme-bound phosphoryl groups can be converted to mannitol 1-phosphate. The EIImtl concentration dependence of the exchange reaction indicates that self-association is a prerequisite for catalytic activity. The self-association can be achieved by increasing the EIImtl concentration or at low concentrations of EIImtl by adding HPr or bovine serum albumin. The equilibrium is shifted toward the dissociated form by mannitol 1-phosphate, resulting in a mannitol 1-phosphate induced inhibition. Mannitol does not affect the association state of the enzyme. Both mannitol and mannitol 1-phosphate also act as classical substrate inhibitors. The apparent Ki of each compound, however, is approximately equal to its apparent Km, suggesting that mannitol and mannitol 1-phosphate bind at the same site on EIImtl. Due to strong inhibition provided by mannitol and mannitol 1-phosphate in the exchange reaction, the kinetics of this reaction cannot be used to determine whether the reaction proceeds via a ping-pong or an ordered reaction mechanism.  相似文献   

5.
The mannitol specific Enzyme II of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli catalyzes an exchange reaction in which a phosphoryl moiety is transferred from one molecule of the heat stable phosphocarrier protein HPr to another. An assay was developed for measuring this reaction. Unlabeled phospho-HPr and 125I-labeled free HPr were incubated together in the presence of Enzyme IImtl, and production of 125I-labeled phospho-HPr was measured. The reaction was concentration-dependent with respect to Enzyme IImtl and did not occur in its absence. The reaction occurred in the absence of Mg2+ in the presence of 10 mM EDTA. Treatment of Enzyme IImtl with the histidyl reagent diethylpyrocarbonate inactivated it with respect to the exchange reaction. Levels of N-ethylmaleimide which inactivate Enzyme IImtl with respect to both P-enolpyruvate-dependent phosphorylation of mannitol and mannitol/mannitol-1-P transphosphorylation did not affect its activity in the exchange reaction; however, treatment with another sulfhydryl reagent, p-chloromercuribenzoate, resulted in partial inactivation. The pH optimum for the Enzyme IImtl-catalyzed exchange reaction was about 7.5. Enzyme I and the glucose specific Enzyme III, two other E. coli phosphotransferase system proteins which, like Enzyme IImtl, interact directly with HPr, were also shown to catalyze 125I-HPr/HPr-P phosphoryl exchange.  相似文献   

6.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   

7.
M Marquet  M C Creignou  R Dedonder 《Biochimie》1978,60(11-12):1283-1287
The Enzyme II complex catalyzing the phosphoryl transfer from P-HPr to sugar in the inducible methyl-alpha-D-glucoside : phosphotransferase system in Bacillus subtilis acts according to a ping-pong mechanism, implying a phosphorylated Enzyme II intermediate. This result is supported by the demonstration of a specific transphosphorylation between [14C] alphaMG and glucose-6-phosphate in the presence of an induced Enzyme II preparation.  相似文献   

8.
The Enzyme II complex catalyzing the phosphoryl transfer from P-HPr to sugar in the inducible methyl-α-D-glucoside: phosphotransferase system in Bacillus subtilis acts according to a ping-pong mechanism, implying a phosphorylated Enzyme II intermediate. This result is supported by the demonstration of a specific transphosphorylation between [14C] αMG and glucose-6-phosphate in the presence of an induced Enzyme II preparation.  相似文献   

9.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

10.
Mannitol metabolism in fungi is thought to occur through a mannitol cycle first described in 1978. In this cycle, mannitol 1-phosphate 5-dehydrogenase (EC 1.1.1.17) was proposed to reduce fructose 6-phosphate into mannitol 1-phosphate, followed by dephosphorylation by a mannitol 1-phosphatase (EC 3.1.3.22) resulting in inorganic phosphate and mannitol. Mannitol would be converted back to fructose by the enzyme mannitol dehydrogenase (EC 1.1.1.138). Although mannitol 1-phosphate 5-dehydrogenase was proposed as the major biosynthetic enzyme and mannitol dehydrogenase as a degradative enzyme, both enzymes catalyze their respective reverse reactions. To date the cycle has not been confirmed through genetic analysis. We conducted enzyme assays that confirmed the presence of these enzymes in a tobacco isolate of Alternaria alternata. Using a degenerate primer strategy, we isolated the genes encoding the enzymes and used targeted gene disruption to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, mannitol dehydrogenase, or both. PCR analysis confirmed gene disruption in the mutants, and enzyme assays demonstrated a lack of enzymatic activity for each enzyme. GC-MS experiments showed that a mutant deficient in both enzymes did not produce mannitol. Mutants deficient in mannitol 1-phosphate 5-dehydrogenase or mannitol dehydrogenase alone produced 11.5 and 65.7 %, respectively, of wild type levels. All mutants grew on mannitol as a sole carbon source, however, the double mutant and mutant deficient in mannitol 1-phosphate 5-dehydrogenase grew poorly. Our data demonstrate that mannitol 1-phosphate 5-dehydrogenase and mannitol dehydrogenase are essential enzymes in mannitol metabolism in A. alternata, but do not support mannitol metabolism operating as a cycle.  相似文献   

11.
Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP(2-) (Michaelis constant 30 mum). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism.  相似文献   

12.
At pH 6.8, pig kidney phosphofructokinase (PFK) is inhibited 90% by 1 mm hexacyanoferrate(II), in a reaction mixture containing 0.2 mm fructose 6-phosphate (F-6-P) and 1 mm ATP. Glucose 6-phosphate dehydrogenase and phosphoglucose isomerase are inhibited 70% by 5 mm hexacyanoferrate(II), at a 0.2 mm concentration of their respective substrates. Unlike all previously reported inhibitions of glycolytic enzymes by hexacyanoferrate, this inhibition seems not to involve an oxidation of enzyme, substrate, or enzyme-substrate complex. It appears to be due to reversible binding of the hexacyanoferrate at, or near, the hexose phosphate binding site of each enzyme. These inhibition studies were carried out in 50 mm 2-mercaptoethanol, and spectral studies showed that these conditions ensured that all the hexacyanoferrate was in the reduced (II) state. The inhibition of PFK was competitive with respect to the substrate F-6-P. Some reaction between hexacyanoferrate(II) and the substrate could not be definitely ruled out, but such reactions cannot be the major basis for the inhibitions observed. Increasing the magnesium concentration did not overcome the PFK inhibition. For all three enzymes, addition of a high concentration of hexose phosphate substrate to an assay mixture containing highly inhibited enzyme resulted in removal of the inhibition. The inhibition was instantaneous, and there was no increase in inhibition with time of incubation with hexacyanoferrate(II). These results may provide an approach to active-site labeling of these three enzymes at their hexose phosphate binding sites. These results should also be of interest to other workers, especially those involved in oxidative phosphorylation studies, who use ferro- and ferricyanide as research tools. The effects from such experiments may, in some cases, be due to binding of these compounds at, or near, hexose phosphate binding sites in the system.  相似文献   

13.
Rapid turnover of mannitol-1-phosphate in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
The phosphate moiety of D-mannitol-1-phosphate in Escherichia coli is subject to rapid turnover and is in close equilibrium with Pi and the phosphorus of fructose-1,6-bisphosphate. These three compounds account for the bulk of 32P label found in cells after several minutes of uptake of 32Pi and mannitol-1-phosphate represents some 30% of this label. Mannitol-1-phosphate occurs in E. coli grown on a variety of carbon sources, in the absence of D-mannitol, and is synthesized de novo even in mutants lacking mannitol-1-phosphate dehydrogenase. The mannitol moiety of mannitol-1-phosphate was not affected during the total chase of the P moiety, which exchanged with a half-life of about 30 s. These findings suggest that the rapid equilibration of the phosphorus is a function of an enzyme, possibly a component of the phosphotransferase system, capable of forming a complex that allows the exchange of the phosphate without the equilibration of the mannitol moiety with free mannitol.  相似文献   

14.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine sensitive) was purified from Escherichia coli carrying the plasmid pKB45. Enzyme of high specific catalytic activity (70 mu/mg) was obtained from cells grown only to the early log phase. The purified protein contained Cu(II) and showed an absorption band at 350 nm. Metal-free, catalytically inactive apoenzyme could be produced by dialysis against cyanide ion, and the holoenzyme could be reconstituted in terms of both catalytic activity and A350 by the binding of one Cu(II) ion per enzyme subunit. Zn(II) also reactivated the apoenzyme to about 50% of the level seen with Cu(II), although in this case no band appeared at 350 nm. In contrast to earlier reports that the enzyme contains substoichiometric levels of iron, insignificant amounts of iron were found in the isolated enzyme, and neither Fe(II) nor FE(III) regenerated either an absorption band at 350 nm or any catalytic activity from the apoenzyme. The evident preference of the enzyme as isolated for (Cu)II suggests that the synthase might naturally be a copper metalloenzyme.  相似文献   

15.
Reconstitution of sugar phosphate transport systems of Escherichia coli   总被引:19,自引:0,他引:19  
Studies with Escherichia coli cells showed that the transport systems encoded by glpT (sn-glycerol 3-phosphate transport) and uhpT (hexose phosphate transport) catalyze a reversible 32Pi:Pi exchange. This reaction could be used to monitor the glpT or uhpT activities during reconstitution. Membranes from suitably constructed strains were extracted with octylglucoside in the presence of lipid and glycerol, and proteoliposomes were formed by dilution in 0.1 M KPi (pH 7). Both reconstituted systems mediated a 32Pi:Pi exchange which was blocked by the appropriate heterologous substrate, sn-glycerol 3-phosphate (G3P) or 2-deoxyglucose 6-phosphate (2DG6P), with an apparent Ki near 50 microM. In the absence of an imposed cation-motive gradient, Pi-loaded proteoliposomes also transported the expected physiological substrate; Michaelis constants for the transport of G3P or 2DG6P were near 20 microM. The heterologous exchange showed a maximal velocity of 130 nmol/min/mg protein via the glpT system and 11 nmol/min/mg protein for the uhpT system. This difference was expected because the G3P transport activity had been reconstituted from a strain carrying multiple copies of the glpT gene. Taken together, these results suggest that anion exchange may be the molecular basis for transport by the glpT and uhpT proteins.  相似文献   

16.
When Absidia glauca was grown in minimal media with D-mannitol as the only source of carbon, an NAD+ specific D-mannitol dehydrogenase (EC 1.1.1.67) was induced. The crude extract also gave evidence of mannitol kinase, mannitol-1-phosphate dehydrogenase, phosphofructokinase, and L-iditol dehydrogenase activity. The heat labile purified preparation was judged enzymically homogeneous based on evidence derived from substrate specificity studies and activity staining, following disc gel electrophoresis. The enzymic monomer, with a weight of about 67000 daltons, slowly polymerizes when stored at -20 degrees C, giving a multiplicity of protein bands on electrophoresis distributed predominantly across a spectrum from dimer to pentamer, with enzymic activity resident predominantly in even multiples of the monomer. Depolymerization occurred rapidly (hours) when a frozen preparation was brought to and held between 4 and 20 degrees C. Aggregate fragmentation with sodium dodecyl sulfate showed a time-temperature dependence, terminating in a subunit component of 13000 daltons. pH optimum for polyol oxidation occurs at 9.6 (NaOH-glycine buffer) while ketose reduction proceeded most rapidly at pH 7.0-7.2 (phosphate buffer). A regulatory role is suggested for this enzyme based on dead-end inhibition by mannitol 1-phosphate, multiple enzyme forms, and its locus at the initiation site for mannitol utilization. The physiological relevance of low-temperature aggregation to regulatory control remains to be established.  相似文献   

17.
S Takahashi  K Abbe    T Yamada 《Journal of bacteriology》1982,149(3):1034-1040
Pyruvate formate-lyase (EC 2.3.1.54) from Streptococcus mutans strain JC2 was purified in an anaerobic glove box, giving a single band on disk and sodium dodecyl sulfate electrophoresis. This enzyme was immediately inactivated by exposure to the air. Enzyme activity was unstable even when stored anaerobically, but the activity was restored by preincubating the inactivated crude enzyme with S-adenosyl-L-methionine, oxamate, and reduced for ferredoxin or methylviologen. On the other hand, the purified enzyme was not reactivated. Either D-glyceraldehyde 3-phosphate or dihydroxyacetone phosphate strongly inhibited this enzyme. The inhibitory effects of these compounds were largely influenced by enzyme concentration. The inhibition of these triose phosphates in cooperation with the reactivating effect of ferredoxin and the fluctuations of both the enzyme and the triose phosphate levels may efficiently regulate the pyruvate formate-lyase activity in S. mutans in vivo.  相似文献   

18.
The detergent 1-O-n-octyl-beta-D-glucopyranoside (octylglucoside) was found to replace the phospholipid requirement in the demethylation of benzphetamine by cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase purified from phenobarbital-treated rabbit liver. At low enzyme concentration (0.1 microM) in the absence of glycerol and phosphate, the maximum rate of benzphetamine-specific NADPH oxidation was approximately 35% of that observed in the presence of dilauroylglyceryl-3-phosphoryl choline. At higher enzyme concentration (2.5 microM) and in the presence of 0.15 M phosphate, 20% glycerol, octylglucoside was as effective as phospholipid in stimulating the production of formaldehyde from benzphetamine. The detergent concentration required for maximal enzymatic activity was 2.5-4.0 g/liter, depending on the cytochrome preparation used. At higher octylglucoside concentrations (5-7 g/liter), activity decreased to zero, although neither enzyme appeared to be irreversibly denatured at these detergent concentrations. Sedimentation equilibrium experiments with P-450LM2 alone or in the presence of equimolar reductase showed that increasing octylglucoside levels promoted disaggregation of the cytochrome. Pentamers and hexamers predominated at detergent concentrations where maximal activity was observed, while higher levels of detergent where activity was absent produced cytochrome dimers and, ultimately, monomers. The reductase was monomeric at detergent levels between at least 3 and 7 g/liter. Moreover, both gel filtration and sedimentation equilibrium experiments demonstrated that a stable complex between P-450LM2 and its reductase was not formed at octylglucoside concentrations where high activity was evident. These results are consistent with a model of P-450/reductase interaction in which functional aggregates of three to six cytochrome polypeptides move laterally in the microsomal membrane and interact with the reductase by random collision.  相似文献   

19.
Homogeneous biosynthetic sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) of Escherichia coli was potently inhibited by palmitoyl-CoA and other long chain acyl-CoA thioesters. The concentration dependence of this inhibition was not cooperative. Enzyme activity was inhibited 50% at 1 microM palmitoyl-CoA; thus, this inhibition occurred at concentrations below the critical micellar concentration of palmitoyl-CoA. Palmitoyl-CoA was a reversible, noncompetitive inhibitor with respect to both NADPH and dihydroxyacetone phosphate. Palmitoyl-CoA did not affect the quaternary structure of the enzyme. This inhibition could be prevented or reversed by the addition of phospholipid vesicles prepared from E. coli phospholipids. Palmitoyl-CoA did not alter the kinetics of inhibition by sn-glycerol 3-phosphate, which is a proven physiological regulator of this enzyme. Decanoyl-CoA, dodecanoyl-CoA, myristoyl-CoA, palmitoyl-(1,N6-etheno)CoA, stearoyl-CoA, and oleoyl-CoA inhibited sn-glycerol-3-phosphate dehydrogenase at concentrations below their critical micellar concentrations. Palmitate inhibited sn-glycerol-3-phosphate dehydrogenase activity 50% at 200 microM. Palmitoyl-carnitine, deoxycholate, taurocholate, and dodecyl sulfate were more potent inhibitors than Triton X-100, Tween-20, or Tween-80. Palmitoyl-acyl carrier protein at concentrations up to 50 microM had no effect on sn-glycerol-3-phosphate dehydrogenase activity. The possible physiological role of long chain fatty acyl-CoA thioesters in the regulation of sn-glycerol 3-phosphate and phospholipid biosynthesis in E. coli is discussed.  相似文献   

20.
Purified membrane-associated phosphatidylinositol synthase (CDP diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from Saccharomyces cerevisiae was reconstituted into unilamellar phospholipid vesicles. Reconstitution of the enzyme was performed by removing detergent from an octylglucoside/phospholipid/Triton X-100/enzyme mixed micelle mixture by Sephadex G-50 superfine column chromatography. The average diameter of the vesicles was 40 nm and chymotrypsin treatment of intact vesicles indicated that over 90% of the reconstituted enzyme had its active site facing outward. The enzymological properties and reaction mechanism of reconstituted phosphatidylinositol synthase were determined in the absence of detergent. The reconstituted enzyme was used as a model system to study the regulation of activity. Phosphatidylinositol synthase was constitutive in wild type cells grown in the presence of water-soluble phospholipid precursors as determined by enzyme activity and immunoblotting. Reconstituted enzyme was not effected by water-soluble phospholipid precursors or nucleotides. Maximum activity was found when the enzyme was reconstituted into phosphatidylcholine: phosphatidylethanolamine: phosphatidylinositol: phosphatidylserine vesicles. Phosphatidylserine stimulated reconstituted activity, suggesting that the local phospholipid environment may regulate phosphatidylinositol synthase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号