首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Hydroxy-2-nonenal (HNE) is one of the most reactive products of lipid peroxidation and has both cytotoxic and genotoxic effects in cells. Several enzymatic pathways have been reported to detoxify HNE, including conjugation by glutathione-S-transferases (GSTs). Removal of the resulting HNE-glutathione conjugate (HNE-SG) by an efflux transporter may be required for complete detoxification. We investigated the effect of expression of GSTM1 and/or the ABC efflux transporter protein, multidrug-resistance protein-1 (MRP1), on HNE-induced cellular toxicity. Stably transfected MCF7 cell lines were used to examine the effect of GSTM1 and/or MRP1 expression on HNE-induced cytotoxicity, GSH depletion, and HNE-protein adduct formation. Co-expression in the MCF7 cell line of GSTM1 with MRP1 resulted in a 2.3-fold sensitization to HNE cytotoxicity (0.44-fold IC(50) value relative to control) rather than the expected protection. Expression of either GSTM1 or MRP1 alone also resulted in slight sensitization to HNE cytotoxicity (0.79-fold and 0.71-fold decreases in IC(50) values, respectively). Co-expression of GSTM1 and MRP1 strongly enhanced the formation of HNE-protein adducts relative to the non-expressing control cell line, whereas expression of either MRP1 alone or GSTM1 alone yielded similarly low levels of HNE-protein adducts to that of the control cell line. Glutathione (GSH) levels were reduced by 10-20% in either the control cell line or the MCF7/GSTM1 cell line with the same HNE exposure for 60min. However, HNE induced >80% depletion of GSH in cells expressing MRP1 alone. Co-expression of both MRP1 and GSTM1 caused slightly greater GSH depletion, consistent with the greater protein adduct formation and cytotoxicity in this cell line. Since expression of GSTM1 or MRP1 alone did not strongly sensitize cells to HNE, or result in greater HNE-protein adducts than in the control cell line, these results indicate that MRP1 and GSTM1 collaborate to enhance HNE-protein adduct formation and HNE cytotoxicity, facilitated by GSH depletion mediated by both MRP1 and GSTM1.  相似文献   

2.

Introduction

4-Hydroxynonenal (HNE) is one of the most abundant and reactive aldehydes of lipid peroxidation products and exerts various effects on intracellular and extracellular signalling cascades. We have previously shown that HNE at low concentrations could be considered as an important mediator of catabolic and inflammatory processes in osteoarthritis (OA). In the present study, we focused on characterizing the signalling cascade induced by high HNE concentration involved in cell death in human OA chondrocytes.

Methods

Markers of apoptosis were quantified with commercial kits. Protein levels were evaluated by Western blotting. Glutathione (GSH) and ATP levels were measured with commercial kits. Glucose uptake was assessed by 2-deoxy-D-[3H]-glucose. The role of GSH-S-transferase A4-4 (GSTA4-4) in controlling HNE-induced chondrocyte apoptosis was investigated by chondrocyte transfection with small interfering RNA (siRNA) or with the expression vector of GSTA4-4.

Results

Our data showed that HNE at concentrations of up to 10 μM did not alter cell viability but was cytotoxic at concentrations of greater than or equal to 20 μM. HNE-induced chondrocyte death exhibited several classical hallmarks of apoptosis, including caspase activation, cytochrome c and apoptosis-induced factor release from mitochondria, poly (ADP-ribose) polymerase cleavage, Bcl-2 downregulation, Bax upregulation, and DNA fragmentation. Our study of signalling pathways revealed that HNE suppressed pro-survival Akt kinase activity but, in contrast, induced Fas/CD95 and p53 expression in chondrocytes. All of these effects were inhibited by an antioxidant, N-acetyl-cysteine. Analysis of cellular energy and redox status showed that HNE induced ATP, NADPH, and GSH depletion and inhibited glucose uptake and citric acid cycle activity. GSTA4-4 ablation by the siRNA method augmented HNE cytotoxicity, but, conversely, its overexpression efficiently protected chondrocytes from HNE-induced cell death.

Conclusion

Our study provides novel insights into the potential mechanisms of cell death in OA cartilage and suggests the potential role of HNE in OA pathophysiology. GSTA4-4 expression is critically important for cellular defence against oxidative stress-induced cell death in OA cartilage, possibly by HNE elimination.  相似文献   

3.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

4.
Acetaminophen (APAP) is hepatotoxic and can cause toxicity in Jurkat T cells. p-Aminophenol (PAP), an industrial chemical and APAP metabolite, is nephrotoxic and hepatotoxic. Its potential toxicity in Jurkat T cells was investigated. PAP (10-250 μM) caused toxicity (decreased survival and increased LDH activity in incubation medium) and GSH depletion. At a concentration of 100 μM but not 250 μM, PAP increased DNA fragmentation. It decreased p-Akt levels (Elisa) and at higher concentrations decreased p-Akt expression (Western blotting). It had no effect on FasL expression. The cysteine precursor 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid (250 μM) attenuated the PAP (100 μM)-induced decrease in viability and prevented GSH depletion and increased DNA fragmentation. It attenuated the PAP-induced decrease in p-Akt levels and protected against the decrease in p-Akt expression. The results demonstrate PAP-induced toxicity and suggest that it is due at least in part to apoptosis and involves GSH depletion and p-Akt inactivation.  相似文献   

5.
Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions, and it is reported that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, is a key mediator of neuronal cell death induced by oxidative stress. Previously, we have demonstrated that interleukin-6 (IL-6) protects PC12 cells from serum deprivation and 6-hydroxydopamine-induced toxicity. Therefore, in the present study, we examined the effects of interleukins on HNE toxicity in PC12 cells. Exposure of PC12 cells to HNE resulted in a decrease in levels of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, which was due to necrotic and apoptotic cell death. Addition of IL-6 24 h before HNE treatment provided a concentration-dependent protection against HNE toxicity, whereas neither IL-1β nor IL-2 had any effect. Addition of glutathione (GSH)-ethyl ester, but not superoxide dismutase or catalase, before HNE treatment to the culture medium protected PC12 cells from HNE toxicity. We found that IL-6 increases intracellular GSH levels and the activity of γ-glutamylcysteine synthetase (γ-GCS) in PC12 cells. Buthionine sulfoximine (BSO), an inhibitor of γ-GCS, reversed the protective effect of IL-6 against HNE toxicity. These results suggest that IL-6 protects PC12 cells from HNE-induced cytotoxicity by increasing intracellular levels of GSH.  相似文献   

6.
Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal.   总被引:3,自引:0,他引:3  
The involvement of glutathione (GSH) dependent processes in the detoxification of 4-hydroxy-2-nonenal (4HNE) was investigated using Chinese hamster fibroblasts and clonogenic cell survival. GSH reacted, in a dose-dependent fashion, with 4HNE in phosphate buffer at pH 6.5, leading to the disappearance of 4HNE. The addition of glutathione transferase activity (GST) facilitated a more rapid disappearance of 4HNE but the reaction was still dependent on the concentration of GSH. When cell cultures were exposed to the reaction mixtures, 4HNE cytotoxicity was also reduced in a manner which was dependent on the concentration of GSH. When 2.16- or 1.08-mM GSH were incubated in phosphate buffer with 1.08-mM 4HNE in the presence or absence of GST, then mixed with media and placed on cells for 1 h, the cytotoxicity associated with exogenous exposure to free 4HNE was abolished. GSH depletion (greater than 90%) using buthionine sulfoximine (BSO) was accomplished in control (HA1) and H2O2-resistant variants derived from HA1. GSH depletion resulted in enhanced cytotoxicity of 4HNE in all cell lines. This BSO-induced sensitization to 4HNE cytotoxicity was accompanied by a significant reduction in the ability of cells to metabolize 4HNE. The magnitude of the sensitization to 4HNE toxicity caused by GSH depletion was similar to the magnitude of the reduction in the ability of cells to metabolize 4HNE. These results support the hypothesis that GSH and GST provide a biologically significant pathway for protection against aldehydic by-products of lipid peroxidation.  相似文献   

7.
Induction of apoptosis represents a potential reaction of endothelial cells (ECs) after injury of the vascular endothelium. Beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in vascular diseases are widely recognized although the responsible mechanisms are not fully understood. Because it is not known whether PUFAs modulate EC apoptosis, we investigated the effects of n-3 and n-6 PUFAs on 4-hydroxynonenal (HNE)-induced EC apoptosis by annexin V staining and caspase-3 activation assays. Pretreatment with the n-3 fatty acid docosahexaenoic acid (DHA) reduced HNE-induced EC apoptosis. DHA-treated cells did not show the pronounced drop in intracellular GSH after HNE exposure seen in vehicle- or n-6 arachidonic acid-treated cells. This is most likely due to increased GSH levels in DHA-treated cells. Furthermore, DHA pretreatment increased ciap1 mRNA levels and transfection of cIAP1 small interfering RNA abolished the protective effect of DHA in HNE-induced apoptosis in HUVECs. Thus pretreatment of HUVECs with DHA reduces HNE-induced oxidative stress and apoptosis, and the protective effects of DHA seem to be dependent on cIAP1. The results provide a possible new mechanism for the atheroprotective effects of n-3 fatty acids in vascular disease.  相似文献   

8.
4-hydroxy-2-nonenal (HNE) plays an important role in the pathogenesis of cardiac disorders. While conjugation with glutathione (GSH) catalyzed by GSH S-transferase (GST) has been suggested to be a major detoxification mechanism for HNE in target cells, whether chemically upregulated cellular GSH and GST afford protection against HNE toxicity in cardiac cells has not been investigated. In addition, the differential roles of chemically induced GSH and GST as well as other cellular factors in detoxifying HNE in cardiomyocytes are unclear. In this study, we have characterized the induction of GSH and GST by 3H-1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-elevated cellular defenses on HNE-mediated toxicity in rat H9C2 cardiomyocytes. Treatment of cardiomyocytes with D3T resulted in a significant induction of both GSH and GST as well as the mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and GSTA. Both GSH and GST remained elevated for at least 72 h after removal of D3T from the culture media. Treatment of cells with HNE led to a significant decrease in cell viability and an increased formation of HNE-protein adducts. Pretreatment of cells with D3T dramatically protected against HNE-mediated cytotoxicity and protein-adduct formation. HNE treatment caused a significant decrease in cellular GSH level, which preceded the loss of cell viability. Either depletion of cellular GSH by buthionine sulfoximine (BSO) or inhibition of GST by sulfasalazine markedly sensitized the cells to HNE toxicity. Co-treatment of cardiomyocytes with BSO was found to completely block the D3T-mediated GSH elevation, which however failed to reverse the cytoprotective effects of D3T, suggesting that other cellular factor(s) might be involved in D3T cytotprotection. In this regard, D3T was shown to induce cellular aldose reductase (AR). Surprisingly, inhibition of AR by sorbinil failed to potentiate HNE toxicity in cardiomyocytes. In contrast, sorbinil dramatically augmented HNE cytotoxicity in cells with GSH depletion induced by BSO. Similarly, in BSO-treated cells, D3T cytoprotection was also largely reversed by sorbinil, indicating that AR played a significant role in detoxifying HNE only under the condition of GSH depletion in cardiomyocytes. Taken together, this study demonstrates that D3T can induce GSH, GST, and AR in cardiomyocytes, and that the above cellular factors appear to play differential roles in detoxification of HNE in cardiomyocytes.  相似文献   

9.
Several studies have indicated that lipid peroxidation often occurs in response to oxidative stress, and that many aldehydic products including 4-hydroxy-2-nonenal (HNE) are formed when lipid hydroperoxides break down. In order to clarify the mechanism of oxidative stress-induced neuronal death in the nervous system, we investigated H(2)O(2)- and HNE-induced cell death pathways in HT22 cells, a mouse hippocampal cell line, under the same experimental conditions. Treatment with H(2)O(2) and HNE decreased the viability of these cells in a time- and concentration-dependent manner. In the cells treated with H(2)O(2), significant increases in the immunoreactivities of DJ-1 and nuclear factor-kappaB (NF-kappaB) subunits (p65 and p50) were observed in the nuclear fraction. H(2)O(2) also induced an increase in the intracellular concentration of Ca(2+), and cobalt chloride (CoCl(2)), a Ca(2+) channel inhibitor, suppressed the H(2)O(2)-induced cell death. In HNE-treated cells, none of these phenomena were observed; however, HNE adduct proteins were formed after exposure to HNE, but not to H(2)O(2). N-Acetyl-L-cysteine (NAC) suppressed both HNE-induced cell death and HNE-induced expression of HNE adduct proteins, whereas H(2)O(2)-induced cell death was not affected. These findings suggest that the mechanisms of cell death induced by H(2)O(2) different from those induced by HNE in HT22 cells, and that HNE adduct proteins play an important role in HNE-induced cell death. It is also suggested that the pathway for H(2)O(2)-induced cell death in HT22 cells does not involve HNE production.  相似文献   

10.
Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.  相似文献   

11.
4-hydroxy-2-nonenal (HNE) activates a variety of signaling pathways. We have recently evaluated the effect of oxidized fatty acid metabolites on cyclooxygenase-2 (COX-2) induction in rat liver epithelial RL34 cells and found that, among the compounds tested, HNE most dramatically induced COX-2. A p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to play a key role in the mechanism of the HNE-induced COX-2 expression. It appears that the HNE-induced activation of p38 MAPK leads to the stabilization of COX-2 mRNA.  相似文献   

12.
4-Hydroxynonenal (HNE) is one of the most abundant aldehyde components of ox-LDL and it exerts various effects on intracellular and extracellular signaling cascades. In this mini-review, a brief synopsis of HNE-modulated signaling pathways will be presented mainly focused on cell death, including recent studies from our laboratory. The results of a number of studies demonstrate the ability of HNE to induce apoptosis and ROS formation in a dose-dependent manner. Several signaling pathways have been shown to be modulated by HNE, including MAP kinases, PKC isoforms, cell-cycle regulators, receptor tyrosine kinases and caspases. In order to get insight into the mechanisms of apoptotic response by HNE, MAP kinase and caspase activation pathways have been studied in 3T3 fibroblasts; HNE induced early activation of JNK and p38 proteins but down-regulated the basal activity of ERK-1/2. We have shown that HNE-induced release of cytochrome c from mitochondria, caspase-9 and caspase-3 activation. Activation of AP-1 along with increased c-Jun and phospho-c-Jun levels could be inhibited by pretreatment of cells with certain molecules such as resveratrol. Additionally, overexpression of dominant negative c-Jun and JNK1 in 3T3 fibroblasts prevented HNE-induced apoptosis, which indicated a role for JNK-c-Jun/AP-1 pathway. JNK-dependent induction of c-Jun/AP-1 activation data in the literature indicates a critical potential role for JNK in the cellular response against toxic products of lipid peroxidation.  相似文献   

13.
Increased oxidative stress and lymphocyte apoptosis are a hallmark of the autoimmune disease systemic lupus erythematosus (SLE). However, the association between oxidative stress and T lymphocytes apoptosis has still to be elucidated in SLE. In order to appraise the interaction between oxidative stress and T lymphocyte apoptosis with the severity of disease, oxidative stress profile and T lymphocytes apoptosis were studied. Increased levels of ROS, MDA and CD4(+) lymphocyte apoptosis were positively associated with disease activity while decreased levels of GSH and percentage expression of CD4(+) lymphocyte were negatively associated with disease activity. The decrease in intracellular levels of GSH was negatively associated with T lymphocyte, CD4(+) lymphocyte, CD8(+) lymphocyte apoptosis and intracellular caspase-3 expression. The present study suggests that increased T lymphocyte sub-sets apoptosis may be mediated by decreased intracellular glutathione concentration and severity of disease might be enhanced together by over-production of ROS in SLE.  相似文献   

14.
Increased levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) coexist in atherosclerotic lesions but their relationship in atherogenesis is unclear. This study investigated the role of 5-LO in HNE-induced CD36 expression and macrophage foam cell formation, and the link between HNE and 5-LO. In J774A.1 murine macrophages, HNE (10 μM) enhanced CD36 expression in association with an increased uptake of oxLDL, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor, or with 5-LO siRNA. In peritoneal macrophages from 5-LO-deficient mice, HNE-induced CD36 expression was markedly attenuated, confirming a pivotal role of 5-LO in HNE-induced CD36 expression. In an assay for 5-LO activity, stimulation of macrophages with HNE led to increased leukotriene B4 production in the presence of exogenous arachidonic acid in association with an increased association of 5-LO to the nuclear membrane. Among the mitogen-activated protein kinase (MAPK) pathways involved in 5-LO phosphorylation, HNE predominantly activated p38 MAPK in macrophages, and the p38 MAPK inhibitor SB203580, but not an extracellular signal-regulated kinase inhibitor, suppressed HNE-induced LTB4 production. Collectively, these data suggest that p38 MAPK-mediated activation of 5-LO by HNE might enhance CD36 expression, consequently leading to the formation of macrophage foam cells.  相似文献   

15.
4-Hydroxynonenal (HNE) accumulates at atherosclerotic lesions, but its role in the progression of atherosclerosis is not clear. Considering the role of matrix metalloproteinases (MMP) in plaque destabilization, we investigated the mechanism by which HNE induces MMP production in vascular smooth muscle cells (VSMC). VSMC stimulated by HNE (1.0 microM) produced enzymatically active MMP-2 with an increased promoter activity, which was abolished by mutation of the NF-kappaB binding site in the promoter region. The increased NF-kappaB activity with subsequent MMP-2 production by HNE was significantly attenuated by transfection with Akt siRNA as well as by pretreatment with the PI3K/Akt inhibitors LY294002 (10 microM) and SH-5 (1.0 microM). The phosphorylation of Akt occurred as early as 5 min in VSMC exposed to HNE and was markedly attenuated by inhibition of mitochondrial reactive oxygen species (ROS). Furthermore, the impact of mitochondrial ROS on HNE-induced Akt phosphorylation with subsequent MMP-2 production was also demonstrated in mitochondrial function-deficient VSMC, as well as in cells transfected with manganese superoxide dismutase. Taken together, these results suggest that HNE enhances MMP-2 production in VSMC via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways.  相似文献   

16.
Oxidative stress has been implicated in the pathogenesis of numerous diseases, including cancer. In the present study, the protective effect of natural antioxidants, such as quercetin and tea polyphenols, on intracellular oxidative stress was studied. Here we report a novel function of quercetin and tea polyphenols, as potential inhibitors of 4-hydroxy-2-nonenal (HNE)-induced intracellular oxidative stress and cytotoxicity. In rat liver epithelial RL34 cells, a potent electrophile HNE dramatically induced the productions of reactive oxygen species (ROS), which correlated well with the reduction in cell viability. We found that quercetin and tea polyphenols, such as epigallocatechin gallate and theaflavins and their gallate esters, significantly inhibited the HNE-induced ROS production and cytotoxicity. In addition, HNE induced a transient decrease in the mitochondrial membrane potential (Δψ), which was also retarded by the antioxidants. These data suggest that the antioxidants, such as quercetin and tea polyphenols, are inhibitors against mitochondrial ROS production.  相似文献   

17.
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.  相似文献   

18.
4-hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues and was recently identified as a potent catabolic factor in OA cartilage. In this study, we provide additional evidence that HNE acts as an inflammatory mediator by elucidating the signaling cascades targeted in OA chondrocytes leading to cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression. HNE induced COX-2 protein and mRNA levels with accompanying increases in prostaglandin E2 (PGE(2)) production. In contrast, HNE had no effect on basal iNOS expression or nitric oxide (NO) release. However, HNE strongly inhibited IL-1beta-induced iNOS or NO production. Transient transfection experiments revealed that the ATF/CRE site (-58/-53) is essential for HNE-induced COX-2 promoter activation and indeed HNE induced ATF-2 and CREB-1 phosphorylation as well as ATF/CRE binding activity. Overexpression of p38 MAPK enhanced the HNE-induced ATF/CRE luciferase reporter plasmid activation, COX-2 synthesis and promoter activity. HNE abrogated IL-1beta-induced iNOS expression and promoter activity mainly through NF-kappaB site (-5,817/-5,808) possibly via suppression of IKKalpha-induced IkappaBalpha phosphorylation and NF-kappaB/p65 nuclear translocation. Upon examination of upstream signaling components, we found that IKKalpha was inactivated through HNE/IKKalpha adduct formation. Taken together, these findings illustrate the central role played by HNE in the regulation of COX-2 and iNOS in OA. The aldehyde induced selectively COX-2 expression via ATF/CRE activation and inhibited iNOS via IKKalpha inactivation.  相似文献   

19.
《Free radical research》2013,47(5):559-567
Abstract

Increased oxidative stress and lymphocyte apoptosis are a hallmark of the autoimmune disease systemic lupus erythematosus (SLE). However, the association between oxidative stress and T lymphocytes apoptosis has still to be elucidated in SLE. In order to appraise the interaction between oxidative stress and T lymphocyte apoptosis with the severity of disease, oxidative stress profile and T lymphocytes apoptosis were studied. Increased levels of ROS, MDA and CD4+ lymphocyte apoptosis were positively associated with disease activity while decreased levels of GSH and percentage expression of CD4+ lymphocyte were negatively associated with disease activity. The decrease in intracellular levels of GSH was negatively associated with T lymphocyte, CD4+ lymphocyte, CD8+ lymphocyte apoptosis and intracellular caspase-3 expression. The present study suggests that increased T lymphocyte sub-sets apoptosis may be mediated by decreased intracellular glutathione concentration and severity of disease might be enhanced together by over-production of ROS in SLE.  相似文献   

20.
Loss of intracellular neuronal glutathione (GSH) is an important feature of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The consequences of GSH depletion include increased oxidative damage to proteins, lipids, and DNA and subsequent cytotoxic effects. GSH is also an important modulator of cellular copper (Cu) homeostasis and altered Cu metabolism is central to the pathology of several neurodegenerative diseases. The cytotoxic effects of Cu in cells depleted of GSH are not well understood. We have previously reported that depletion of neuronal GSH levels results in cell death from trace levels of extracellular Cu due to elevated Cu(I)-mediated free radical production. In this study we further examined the molecular pathway of trace Cu toxicity in neurons and fibroblasts depleted of GSH. Treatment of primary cortical neurons or 3T3 fibroblasts with the glutathione synthetase inhibitor buthionine sulfoximine resulted in substantial loss of intracellular GSH and increased cytotoxicity. We found that both neurons and fibroblasts revealed increased expression and activation of p53 after depletion of GSH. The increased p53 activity was induced by extracellular trace Cu. Furthermore, we showed that in GSH-depleted cells, Cu induced an increase in oxidative stress resulting in DNA damage and activation of p53-dependent cell death. These findings may have important implications for neurodegenerative disorders that involve GSH depletion and aberrant Cu metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号