首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The penicillin G amidase (PGA) from Alcaligenes faecalis, which has interesting properties for use in combinatorial biochemistry, was produced by recombinant expression in Escherichia coli. The corresponding gene was cloned into a multicopy vector under the strict regulatory control of the rhamnose inducible promoter. Cells were grown in a synthetic minimal medium in a bioreactor (5 l working vol.), and production of PGA was induced by repeated addition of the inducer rhamnose, that served also as a carbon source. The fermentation yield was about 4500 units PGA activity per liter of culture medium.  相似文献   

2.
3.
比较研究了几种破碎大肠杆菌细胞的方法,如渗透压法、超声波法、玻珠震碎法、玻珠研磨法、有机溶剂法、冻融法以及盐酸胍/EDTA法等,以确定出一种简单、快速、高效的破碎重组大肠杆菌细胞的方法获得粪产碱杆菌青霉素G酰化酶(AfPGA)用于后续试验。结果表明玻珠震碎法、超声波法和渗透压法是较优的细胞破碎方法,活力回收率分别为99.7%、78.4%、60.7%,其他方法均低于22%。而比活力以渗透压法为最高,达到4.40 U/mg。  相似文献   

4.
5.
6.
The modeled structure of penicillin acylase from Alcaligenes faecali (AFPGA) was constructed by comparative modeling with the Modeller program. Candidate positions that could be replaced with cysteine were estimated by scanning the modeled structure of AFPGA with the program MODIP (modeling disulfide bond in protein). The mutant Q3C/P751C had a higher optimum temperature by three degrees than that of the wild type AFPGA. The half life of the double mutant Q3C/P751C at 55 degrees C was increased by 50%. To our knowledge, this was the first structure-based genetic modification of AFPGA.  相似文献   

7.
Search for anti-beta-lactamase and synthesis of newer penicillin were suggested to overcome resistance to penicillin in chemotherapy. It was found that clavulanic acid, an ant-beta-lactamase was ineffective due to its structural modification by bacteria. Thus, there is a need for the synthesis of newer pencillins. Retro-synthesis was inspired by the success of forward reaction i.e.conversion of penicillin G to 6-aminopenicillanic acid (6-APA) by biological process. In the present study a better enzymatic method of synthesis of newer pencillin by a beta-lactamase-free penicillin amidase produced by Alcaligenes sp. is attempted. Antibacterial and toxicological evaluation of the enzymatically synthesized beta-lactams are reported. Condensation of 6-APA with acyl donor was found to be effective when the reaction is run in dimethyl formamide (DMF 50% v/v) in acetate buffer (25 mM pH 5.0) at 37 degrees C. Periplasm entrapped in calcium alginate exihibited the highest yield (approximately 34%) in synthesis. The minimum inhibitory concentration of the synthetic products against Staphylococcus aureus and Salmonella typhi varied between 20-80 microg/ml. Some of the products exhibited antibacterial activity against enteric pathogens. It was interesting to note that product A was potent like penicillin G. LD50 value of three products (product A, B and C) was more than 12 mg/kg. Furthermore, these synthetic beta-lactams did not exihibit any adverse effect on house keeping enzymes viz., serum glutamate oxalacetate-trans-aminase, serum glutamate pyruvate -trans-aminase, acid phosphatase, alkaline phosphatase of the test animals. The hematological profile (RBC and WBC) of the test animals also remained unaffected.  相似文献   

8.
Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge.  相似文献   

9.
Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2.   总被引:5,自引:4,他引:5       下载免费PDF全文
A phenanthrene-degrading bacterium that assimilated a wide range of organic compounds was isolated from a soil sample and identified as Alcaligenes faecalis strain AFK2. The strain degraded phenanthrene through protocatechuate, but did not utilize naphthalene. The phenanthrene-degrading phenotype (Phn+) of AFK2 disappeared after 20 successive subcultures in a mineral salts medium containing o-phthalate or after subculture in nutrient broth containing mitomycin C. The results suggested that the Phn+ phenotype of this strain might be encoded by extrachromosomal genes.  相似文献   

10.
Oxidation of arsenite to arsenate by Alcaligenes faecalis.   总被引:4,自引:0,他引:4       下载免费PDF全文
Alcaligenes faecalis, resistant to the toxic effects of 0.01 M sodium arsenite, was isolated from raw sewage and shown to be capable of oxidizing arsenite to arsenate. When the organisms were grown in chemically defined medium, this conversion was due to the appearance at stationary phase of an intracellular, oxygen-sensitive, inducible enzyme and/or component of the electron transport system; when the organisms were grown in a nutrient broth-yeast extract medium, the enzyme appeared in the late exponential phase of growth. The presence of 0.02 M arsenite in the culture medium affected neither growth rate nor final cell yield.  相似文献   

11.
Alcaligenes faecalis, resistant to the toxic effects of 0.01 M sodium arsenite, was isolated from raw sewage and shown to be capable of oxidizing arsenite to arsenate. When the organisms were grown in chemically defined medium, this conversion was due to the appearance at stationary phase of an intracellular, oxygen-sensitive, inducible enzyme and/or component of the electron transport system; when the organisms were grown in a nutrient broth-yeast extract medium, the enzyme appeared in the late exponential phase of growth. The presence of 0.02 M arsenite in the culture medium affected neither growth rate nor final cell yield.  相似文献   

12.
13.
14.
Summary For hydrophobic binding of penicillin amidase to modified Sepharose, a phenyl group or a hydrophobic aliphatic moiety (leucyl, octyl) is necessary. Concentration and purification of the enzyme can then be achieved in a single step.  相似文献   

15.
Stabilisation and immobilisation of penicillin amidase   总被引:2,自引:0,他引:2  
Penicillin amidase was coupled to a periodate-oxidised dextran by reductive alkylation in the presence of sodium cyanoborohydride. A loss of activity (25%) was observed but the conjugate enzyme dextran was more thermostable than the native enzyme. Native and dextran-conjugated penicillin amidase were immobilised on amino activated silica (Promaxon, Spherosil, Aerosil) by a classical method using glutaraldehyde for the native enzyme and reductive alkylation for the modified enzyme. Good relative activity of the enzymes was obtained after insolubilisation. Immobilisation of both native and modified enzymes resulted in the thermostabilisation of the penicillin amidase.  相似文献   

16.
Degradation of ergothioneine by Alcaligenes faecalis   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

17.
18.
19.
An enzyme preparation in a spherical granule form was obtained by copolymerization of penicillin amidase (EC 3.5.1.11) (previously modified with maleic anhydride) and acrylamide via a crosslinking agent. As compared with the native enzyme, immobilized amidase is more resistant to heating, has a lower affinity to benzylpenicillin, and is less inhibited by phenylacetate. Its substrate specificity and optimum pH remain unchanged.  相似文献   

20.
The pH dependence of E (enantiomeric ratio or enantioselectivity, a quantitative measure for enzyme stereospecificity) was studied for penicillin amidase catalysed hydrolysis of charged enantiomeric substrates. Theoretical analysis shows that a pH dependence can only be observed around the pK values of groups in the active site whose ionisation control the enzyme activity. For charged substrates that may perturb these pK values, a pH dependence of E is also expected. This was experimentally verified around these pK values. The S'(1)-stereospecificity of penicillin amidase was studied for the hydrolysis of the enantiomeric phenylacetyl-S/R-Phe and for the racemic phenylacetyl-S,R-PhG. The S(1)-stereospecificity was investigated for the hydrolysis of the enantiomeric S/R-PhG-NH(2). The observed pH modulation of E (more than 3-fold for the studied substrates in the pH range 4.5-9) was found to be a result of compensatory effects for binding and catalysis. The ratios k(cat, S)/k(cat,R) and K(m,S)/K(m,R) for the hydrolysis of the enantiomeric phenylacetyl-Phe were found to decrease from 1000 to 10 and from 0.1 to 0.01, respectively in the pH range 5-8. The dependence was stronger for the S'(1)- than for the S(1)-subsite. This is probably due to the stronger influence of the substrate carboxyl group in the S'(1)-subsite than that of the substrate amino group in the S(1)-subsite on the pK of the N-terminal Ser B1 that is essential for the activity. The observed pH dependence of E was used to discuss the importance of ground-state interactions for discrimination between enantiomers and for enzyme catalysis in general. The experimental results conform to the split site model according to which a better binding must not be fundamentally inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号