首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of glucose oxidase and catalase by Aspergillus niger was investigated using a resting cell culture system without growth being established. Calcium carbonate induced the synthesis of both enzymes and calcium chloride inhibited it. The optimal pH for the biosynthesis of glucose oxidase and catalase was 6.0 and 5.7, respectively. The effects of other bivalent cations, reductive compounds and metabolic products on enzyme synthesis were also tested. The biosynthesis of glucose oxidase and catalase was promoted by MnCO3, thioglycolic acid, pyroracemic acid and gluconic acid.  相似文献   

2.
The main parameters of growth and glucose oxidase production by the mutant Penicillium funiculosum strains BIM F-15.3, NMM95.132, and 46.1 were studied. The synthesis of extracellular glucose oxidase by these strains was constitutive and occurred following the phase of exponential growth. The mutant strains also synthesized extracellular invertase and cell-associated catalase and glucose oxidase. The syntheses of invertase, the cell-associated enzymes, and extracellular glucose oxidase were found to be maximum between 14 and 18 h, between 48 and 52 h, and by the 96th h of cultivation, respectively. Among the mutants studied, P. funiculosum 46.1 showed the maximal rates of growth and glucose oxidase synthesis.  相似文献   

3.
Semashko  T. V.  Mikhailova  R. V.  Lobanok  A. G. 《Microbiology》2004,73(3):286-291
The main parameters of growth and glucose oxidase production by the mutant Penicillium funiculosum strains BIM F-15.3, NMM95.132, and 46.1 were studied. The synthesis of extracellular glucose oxidase by these strains was constitutive and occurred following the phase of exponential growth. The mutant strains also synthesized extracellular invertase and cell-associated catalase and glucose oxidase. The syntheses of invertase, the cell-associated enzymes, and extracellular glucose oxidase were found to be maximum between 14 and 18 h, between 48 and 52 h, and by the 96th hour of cultivation, respectively. Among the mutants studied, P. funiculosum 46.1 showed the maximal rates of growth and glucose oxidase synthesis.  相似文献   

4.
Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.  相似文献   

5.
The effect of medium composition on glucose oxidase (GOD) production by the strain Penicillium variabile P16 was studied in shake culture. All the experiments were performed in a medium containing glucose and sodium nitrate as carbon and nitrogen sources, respectively. Addition of Fe2+ to the medium was important to stimulate GOD production. Calcium carbonate was extremely important in maintaining the medium at a pH high enough so that the enzyme was not inactivated. The time course of growth and enzyme production by P. variabile P16 in the optimized medium is reported.  相似文献   

6.
从健康人口腔中分离的寡发酵链球菌(Streptococcus oligofermentans)能够产生大量的过氧化氢,可能具有抑制致病菌的潜力。为了研究该细菌产过氧化氢的特性,检测了其在不同生长时期和从不同底物产过氧化氢的能力。结果表明,寡发酵链球菌从对数生长早期就开始产过氧化氢,在对数生长后期及稳定期过氧化氢产量达到最高,随后下降。在PYG培养基中,寡发酵链球菌所产的过氧化氢主要来源于大豆蛋白胨和酵母提取物;而代谢终产物乳酸也可作为过氧化氢产生的底物。对3种可能与过氧化氢生成有关的氧化酶的酶活测定表明,寡发酵链球菌具有乳酸氧化酶(LOX)及NADH氧化酶(NOX)的活性,说明其过氧化氢的产生主要依赖于这两种酶的活力。  相似文献   

7.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

8.
The influence of agitation and aeration on growth and on production of glucose oxidase of Asp. niger has been studied. It was found that both rate of growth and glucose oxidase production was higher at an agitation speed of 700 rpm than at 460 rpm. Further increase in speed of agitation resulted in neither a higher rate of growth nor a higher glucose oxidase activity. Total glucose oxidase activity was highest in a medium containing 5% sugar (at an agitation speed of 700 rpm) and did not get higher when the sugar concentration of the medium was increased to 7%. When pure oxygen was bubbled through the culture the rate of growth of the culture (in the linear phase) was 95 mg. mycelial dry wt./100 ml./hr., and only 61 mg. when air was applied. The glucose oxidase activity of oxygenated culture was double the activity of aerated culture. Viscosity of the homogenized culture became higher with higher concentration of mycelia. The viscosity of oxygenated culture was found to be lower than that of aerated culture.  相似文献   

9.
10.
11.
Summary Changes in glucose concentrations were slight on incubation in a system of fresh soils, buffer, and toluene at 37°C and were not significantly detectable by a titrimetric method. Such changes would be too small to affect the accuracy of assays of enzymes hydrolysing carbohydrates in soil where activities are measured by glucose production.Oxygen uptake was slight but increased significantly when glucose was added to four undried soils incubated with toluene; uptake was greater at 37°C than at 24°C. Numbers of viable bacteria declined during incubation. Oxidation of glucose was negligible in a similar system with air-dried soils.Gluconic acid and 2-ketogluconic acid were identified as metabolic products from glucose incubated with soils and toluene. There was an approximate equivalence of oxygen uptake and acid production after incubation for 24 hours but not after longer periods. In the absence of toluene, both gluconic and 2-ketogluconic acids were readily metabolised by soils on incubation at 37°C.Results suggest that glucose oxidase and gluconate dehydrogenase are present in soils but that only a small proportion of glucose would be metabolised by oxidase activity in soils under natural conditions. Other oxidoreductase enzymes would also be active in soils.  相似文献   

12.
The synthesis of ethylene by cauliflower floret tissue was increased when the tissue was inoculated with the soft-rot bacterium Erwinia carotovora. This effect was clearly associated with the production of pectic enzymes by the micro-organism. These enzymes, acting together with the plant enzymes, stimulated the production of ethylene from methionine. The increased synthetic activity was due to the release and increased activity of a glucose oxidase enzyme apparently attached to plant cell-wall material and liberated by the action of pectic enzymes of the bacterium.  相似文献   

13.
Two different membrane-bound enzymes oxidizing D-sorbitol are found in Gluconobacter frateurii THD32: pyroloquinoline quinone-dependent glycerol dehydrogenase (PQQ-GLDH) and FAD-dependent D-sorbitol dehydrogenase (FAD-SLDH). In this study, FAD-SLDH appeared to be induced by L-sorbose. A mutant defective in both enzymes grew as well as the wild-type strain did, indicating that both enzymes are dispensable for growth on D-sorbitol. The strain defective in PQQ-GLDH exhibited delayed L-sorbose production, and lower accumulation of it, corresponding to decreased oxidase activity for D-sorbitol in spite of high D-sorbitol dehydrogenase activity, was observed. In the mutant strain defective in PQQ-GLDH, oxidase activity with D-sorbitol was much more resistant to cyanide, and the H(+)/O ratio was lower than in either the wild-type strain or the mutant strain defective in FAD-SLDH. These results suggest that PQQ-GLDH connects efficiently to cytochrome bo(3) terminal oxidase and that it plays a major role in L-sorbose production. On the other hand, FAD-SLDH linked preferably to the cyanide-insensitive terminal oxidase, CIO.  相似文献   

14.
Alginate–carbon beads were prepared in order to develop a biocompatible matrix for laccase and glucose oxidase immobilization for application in biofuel cell technology. The enzyme loading capacity was high (91%) in pure alginate beads for glucose oxidase. For laccase, the loading capacity was enhanced from 75% to 83% by introducing carbon. Desorption out of the matrix was controlled by the enzymes’ diffusion and reached a plateau after 40 h for laccase and 70 h for glucose oxidase. Two-thirds of both enzymes was irreversibly retained inside the alginate beads. This proportion increased to 80% for laccase in combined alginate/carbon beads. Half-life of the adsorbed enzyme was enhanced to 74 days for laccase in carbon/alginate beads and 45 days for glucose oxidase in pure alginate as compared to 38 days and 23 days for free enzymes, respectively.  相似文献   

15.
《Phytochemistry》1986,25(11):2537-2539
In the presence of Trametes versicolor laccase, generation of quinonoid intermediates formed from a high-molecular-weight fraction of lignosulphonates (Peritan Na) was observed. The addition of glucose oxidase caused a diminution of the quinone level; thioglycolic acid intensified this process. When both laccase and glucose oxidase were incubated with the high-molecular-weight fraction, depolymerization was more extensive than in the experiment omitting glucose oxidase. In the case of the low-molecular-weight fraction, these two enzymes operated in concert and the polymerization process was disturbed due to glucose oxidase activity. Therefore the action of glucose oxidase in reducing quinones improved the efficiency of lignin depolymerization.  相似文献   

16.
Glucose oxidase (β-d-glucose:oxygen 1-oxidoreductase; EC 1.1.2.3.4) catalyzes the oxidation of β-d-glucose to gluconic acid, by utilizing molecular oxygen as an electron acceptor with simultaneous production of hydrogen peroxide. Microbial glucose oxidase is currently receiving much attention due to its wide applications in chemical, pharmaceutical, food, beverage, clinical chemistry, biotechnology and other industries. Novel applications of glucose oxidase in biosensors have increased the demand in recent years. Present review discusses the production, recovery, characterization, immobilization and applications of glucose oxidase. Production of glucose oxidase by fermentation is detailed, along with recombinant methods. Various purification techniques for higher recovery of glucose oxidase are described here. Issues of enzyme kinetics, stability studies and characterization are addressed. Immobilized preparations of glucose oxidase are also discussed. Applications of glucose oxidase in various industries and as analytical enzymes are having an increasing impact on bioprocessing.  相似文献   

17.
A M Michelson  J Maral 《Biochimie》1983,65(2):95-104
Presence of carbonate anions increases the oxidation of luminol in different chemical systems. Lysis of human erythrocytes due to the action of dihydroxyfumaric acid or of perborate is also stimulated by carbonate ions. These anions also change considerably the loss of activity of different enzymes treated with superoxide, hydroxyl or formate radicals and can increase or decrease the effect as a function of the nature of the active centre of the enzyme. The relative effects of superoxide, hydroxyl, formate and carbonate radicals for the inactivation of various enzymes (superoxide dismutases, catalase, ribonuclease, glucose oxidase and glutathione peroxidase) have been examined. Three systems were used: gamma-irradiation under different conditions, photoproduction of radicals and sonication. Inactivation of the enzymes is a function not only of the radical used but also of the nature of the active site. Thus glutathione peroxidase is remarkably resistant to hydroxyl radicals while the superoxide dismutases are rapidly inactivated by carbonate radicals. All of the results combine to show that the presence or absence of carbonate anions must be considered in all studies of oxygen containing free radicals whether chemical, biochemical or biological or high energy irradiation.  相似文献   

18.
The time course of the peroxidative bromination of propylene accompanied by in situ generation of hydrogen peroxide by glucose oxidase was examined to improve the productivity of propylene bromohydrin. To prevent the rapid inactivation of lactoperoxidase by excess hydrogen peroxide, it was effective to use lactoperoxidase in large excess as compared with glucose oxidase, and to raise the concentration of bromide ion. However, the rate of glucose consumption was lowered at high concentrations of bromide ion, and at higher mole fraction of oxygen as compared with propylene in the gas mixture. Therefore, it seemed that for the favorable production of bromohydrin there existed the optimal conditions for the concentration of bromide ion and for the composition of oxygen-propylene gas mixture. Such kinetic behaviors of the sequential enzymatic reactions were explained by a mechanism involving free hypobromous acid as a reactive intermediate. Furthermore, the stability of the coimmobilized enzymes with k-carrageenan gels was investigated in continuous operations. The half-life of the enzymes was ca. 60 h for the production of propylene bromohydrin.  相似文献   

19.
AIMS: To obtain an optimal combination of agitation speed and aeration rate for maximization of specific glucose oxidase (GOD) production in recombinant Saccharomyces cerevisiae, and to establish a correlation between kLa vis-à-vis oxygen transfer condition and specific glucose oxidase production. METHODS AND RESULTS: The oxygen transfer condition was manifested indirectly by manipulating the impeller speed and aeration rate in accordance with a Central Composite Rotatory Design (CCRD). The dissolved oxygen concentration and the volumetric oxygen transfer coefficient (kLa) were determined at corresponding combinations of impeller speed and aeration rate. The maximal specific extracellular glucose oxidase production (3.17 U mg-1 dry cell mass) was achieved when the initial dissolved oxygen concentration was 6.83 mg l-1 at the impeller speed of 420 rev min-1 and at the rate of aeration of 0.25 vvm. It was found out that while impeller speed had a direct effect on the production of enzyme, a correlation between kLa and specific GOD production could not be established. CONCLUSION: At the agitation speed of 420 rev min-1 and at 0.25 vvm aeration rate, the degree of turbulence and the dissolved oxygen concentration were thought to be optimal both for cellular growth and production of enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY: The combined effect of agitation and aeration on recombinant glucose oxidase production in batch cultivation has not yet been reported in the literature. Therefore, this study gives an insight into the effect of these two important physical parameters on recombinant protein production. It also suggests that since there is no correlation between kLa and specific production of GOD, kLa should not be used as one of the scale-up parameters.  相似文献   

20.
The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号