首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma cruzi: immune response in mice immunized with parasite antigens   总被引:1,自引:0,他引:1  
The humoral and cellular immune responses were studied in mice immunized with flagellar fraction (F), F plus Bordetella pertussis as adjuvant (F-Bp), and microsomal (Mc) subcellular fractions from the epimastigote forms of Trypanosoma cruzi. The immune response was studied before and after the challenge with 50 bloodstream forms of T. cruzi, Tulahuén strain. The immunization with F-Bp, but not with Mc or F and Bp separately, protected mice, in terms of parasitemia and mortality, from the challenge with the parasite. Before the challenge, levels of specific antibodies in mice immunized with F-Bp were higher than in mice immunized with F or Mc. Antibody levels 17 days after the infection were similar in the three groups of mice while nonimmunized mice reached lower levels. Early during the infection nonimmunized infected mice lacked delayed-type hypersensitivity (DTH) responses to parasite antigens and to concanavalin A (Con A). Mice immunized with F-Bp, however, presented positive DTH responses to parasite antigens and Con A both, before and after the challenge with T. cruzi. DTH reaction was transferred with spleen cells. Mice immunized with Mc behaved similarly to infected nonimmunized animals in their reactivity to parasite antigens. These results indicated striking differences between protected and nonprotected mice in humoral and cellular immune responses during experimental T. cruzi infection.  相似文献   

2.
We have previously reported that genetic immunization with Tc13Tul antigen of Trypanosoma cruzi, the aetiological agent of Chagas' disease, triggers harmful effects and non-protective immune responses. In order to confirm the role of Tc13 antigens during T. cruzi infection, herein we studied the humoral and cellular immune responses to the Tc13Tul molecule and its EPKSA C-terminal portion in BALB/c T. cruzi-infected mice or mice immunized with recombinant Tc13Tul. Analysis of the antibody response showed that B-cell epitopes that stimulate a sustained IgM production along the infection and high levels of IgG in the acute phase are mainly located at the Tc13 N- and C-terminal domains, respectively. DTH assays showed that T-cell epitopes are mainly at the Tc13 N-terminal segment and that they do not elicit an efficient memory response. Recombinant Tc13Tul did not induce IFN-gamma secretion in either infected or immunized mice. However, a putative CD8+Tc13Tul-derived peptide was found to elicit IFN-gamma production in chronically infected animals. Immunization with recombinant Tc13Tul did not induce pathology in tissues and neither did it protect against the infection. Our results show that in the outcome of T. cruzi infection the Tc13 family protein mainly triggers non-protective immune responses.  相似文献   

3.
Mice infected with 5 x 10(3) forms of Trypanosoma cruzi showed a transient, but severe impairment of in vitro spleen cell responses to parasite antigens and to Concanavalin A (Con A). In contrast, inguinal and periaortic lymph node (LN) cells displayed high parasite-specific proliferative responses and only a partial reduction of the Con A-induced proliferation during the acute and chronic phases of infection. Lymphocytes that underwent blastic transformation in T. cruzi-stimulated cell cultures were of the L3T4+ phenotype. Suppression of spleen cell responses occurred in the acute phase whether mice were infected with high (3 x 10(5] or low (5 x 10(3] doses of T. cruzi by intraperitoneal or subcutaneous route. Suppression of the T. cruzi-specific proliferative response of LN cells was only observed in mice infected with high subcutaneous inocula. This suppression, however, was restricted to the LNs draining the site of inoculation without affecting distant LNs. Supernatants from parasite-stimulated proliferating LN cells displayed low or undetectable T cell growth factor (TCGF) activity, in contrast with the high TCGF levels found in supernatants of the same cells stimulated with Con A. Low levels of TCGF were also detected in cultures of LN cells from mice immunized with T. cruzi extracts. Neither the T. cruzi antigen used for in vitro stimulation nor the LN cell supernatants from infected mice inhibited TCGF activity. These findings indicate that (1) parasite-specific responses are present in the LN compartment throughout the acute phase of T. cruzi infection in mice and (2) the proliferative response of L3T4+ LN cells from infected mice to T. cruzi antigens is not associated with a high TCGF secretory response.  相似文献   

4.
Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation.  相似文献   

5.
ABSTRACT. Mice infected with the protozoan parasite Trypanosoma cruzi , the causative agent of human Chagas'disease, develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC), hapten-conjugated SRBC (TNP-SRBC), and horse erythrocytes (TNP-HRBC). Studies in vivo demonstrated that anti-SRBC responses were best enhanced when T. cruz -infected mice were injected with primed T cells derived from normal or infected mice immunized four days previously. The presence of enhancing capacities for DPFC responses by T cells from T. cruzi -infected mice were also supported by experiments examining the hapten-carrier effect. Preimmunization of infected mice with SRBC or HRBC four days before injection of hapten-homologous (TNP-SRBC or TNP-HRBC) carrier resulted in markedly augmented anti-hapten antibody responses. These results show that functional help provided by T cells activated during priming and exposed to a challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in T. cruzi -infected mice.  相似文献   

6.
Several antigens have been tested as vaccine candidates against Leishmania infections but controversial results have been reported when different antigens are co-administered in combined vaccination protocols. Immunization with A2 or nucleoside hydrolase (NH) antigens was previously shown to induce Th1 immune responses and protection in BALB/c mice against Leishmania donovani and L. amazonensis (A2) or L. donovani and L. mexicana (NH) infections. In this work, we investigated the protective efficacy of A2 and NH DNA vaccines, in BALB/c mice, against L. amazonensis or L. chagasi challenge infection. Immunization with either A2 (A2-pCDNA3) or NH (NH-VR1012) DNA induced an elevated IFN-gamma production before infection; however, only A2 DNA immunized mice were protected against both Leishmania species and displayed a sustained IFN-gamma production and very low IL-4 and IL-10 levels, after challenge. Mice immunized with NH/A2 DNA produced higher levels of IFN-gamma in response to both specific recombinant proteins (rNH or rA2), but displayed higher IL-4 and IL-10 levels and increased edema and parasite loads after L. amazonensis infection, as compared to A2 DNA immunized animals. These data extend the characterization of the immune responses induced by NH and A2 antigens as potential candidates to compose a defined vaccine and indicate that a highly polarized type 1 immune response is required for improvement of protective levels of combined vaccines against both L. amazonensis and L. chagasi infections.  相似文献   

7.
Liposome-associated ganglioside antigens (ganglioside GM1 or bovine brain gangliosides) were prepared to facilitate the potential protective efficacy for Trypanosoma brucei. Mice were immunized with liposome-associated ganglioside GM1 or bovine brain gangliosides intraperitoneally (i.p.). After immunization, significantly higher antigen-specific IgG and IgM antibodies were detected in sera than in the nonimmunized control group. When sera from immunized mice were analyzed for isotype distribution, antigen-specific IgG1, IgG2a, and IgG3 antibody responses were also noted. After immunization, mice were challenged i.p. with 1 x 10(2) cells of T. brucei. Sixty percentage of liposome-associated ganglioside GM1-immunized mice survived the infection, and all the mice immunized with bovine brain gangliosides-containing liposomes survived. However, all control mice died within 7 days after infection. These data demonstrate that liposomes containing ganglioside antigens have the potential usefulness for the induction of a protective immune response against T. brucei infection and suggest the possibility of developing vaccines that may ultimately be used for the prevention of trypanosomiasis.  相似文献   

8.
Several monoclonal antibodies were prepared against the flagellar fraction of Trypanosoma cruzi epimastigotes (Tulahuén strain, stock Tul 2). One of them, FCH-F8-4, has previously shown biologic activity against the parasite (complement-mediated lysis and neutralization of the trypomastigote infectivity). Immunopurified antigens using this monoclonal antibody elicited a protective immune response in mice. Two recombinant cDNA clones were detected with this anti-flagellar fraction monoclonal antibody on a lambda gt11 expression library prepared from T. cruzi epimastigote mRNA. The insert of one of these cDNA clones, lambda(FCH-F8-4)1 (150 bp) coded for a 19-amino acid peptide (PAFLGCSSRFSGSFSGVEP). This insert hybridized with a 5.0-kb mRNA from epimastigotes. The beta-galactosidase fusion protein was produced in lysogenic bacteria. The monoclonal antibody recognized the epitope present in the fusion protein after western blotting of the crude lysate. A synthetic peptide (SP4) containing the complete sequence of lambda(FCH-F8-4)1 was constructed on solid phase. This peptide was able to inhibit the ELISA reactivity (in a range from 13 to 52%) of flagellar fraction immunized mouse sera and when administered (coupled to KLH or alone) to BALB/c mice with Bordetella pertussis as adjuvant, it induced a humoral and cellular immune response which was detected by ELISA, immunofluorescence, blotting, and DTH reactions against T. cruzi antigens. The immune response obtained indicates that this synthetic peptide resembles the parasite antigen conformation and could be useful for diagnosis purposes or be able to elicit immunoprotection against T. cruzi infection.  相似文献   

9.
BALB/c or C57Bl/6 mice immunized with plasmids containing Trypanosoma cruzi genes developed specific immune responses and protective immunity against lethal parasitic infection. In contrast, in the highly susceptible mouse strain A/Sn, DNA vaccination reduced the peak parasitemia but promoted limited mouse survival after challenge. In the present study, we tested whether the immunogenicity and protective efficacy of vaccination could be improved by combining DNA and recombinant protein immunization regimens. A/Sn mice immunized with plasmid p154/13 which harbours the gene encoding Trypanosoma cruzi trans-sialidase developed a predominant type 1 immune response. In contrast, immunization with the recombinant Trypanosoma cruzi trans-sialidase protein adsorbed to alum generated a typical type 2 immune response. Simultaneous administration of both p154/13 and recombinant Trypanosoma cruzi trans-sialidase protein also led to a predominant type 2 immune response. Sequential immunization consisting of two priming doses of p154/13 followed by booster injections with recombinant Trypanosoma cruzi trans-sialidase protein significantly improved specific type 1 immune response, as revealed by a drastic reduction of the serum IgG1/IgG2a ratio and by an increase in the in vitro interferon-gamma secretion by CD4 T cells. Our observations confirm and extend previous data showing that a DNA-priming protein-boosting regimen might be a general strategy to enhance type 1 immune response to DNA vaccines. Upon challenge with Trypanosoma cruzi, no improvement in protective immunity was observed in mice immunized with the DNA-priming protein-boosting regimen when compared to animals that received DNA only. Therefore, our results suggest that in this experimental model there is no correlation between the magnitude of type 1 immune response and protective immunity against Trypanosoma cruzi infection.  相似文献   

10.
Recombinant murine IFN-gamma (rMu-IFN-gamma) was demonstrated to be a potent in vivo activator of mouse peritoneal macrophages to kill Trypanosoma cruzi in vitro and to be capable of conferring protection against death from acute T. cruzi infection. Following i.p. injections of rMu-IFN-gamma, resident peritoneal macrophages were cultured and infected with T. cruzi in vitro. Numbers of intracellular parasites were determined at different times thereafter. Ten or 100 micrograms (1 microgram = 6.5 X 10(5) U) of Mu-IFN-gamma, injected both 24 and 4 h before macrophage harvest, induced up to 99% inhibition of T. cruzi. One microgram of rMu-IFN-gamma was not effective under these conditions. In vitro inhibition of T. cruzi by peritoneal macrophages occurred by 24 h after infection and continued until at least 120 h after infection. There were no significant differences in initial parasite uptake by macrophages from IFN-gamma-treated or control mice, indicating that the rMu-IFN-gamma induced parasite killing. One i.p. dose of 10 micrograms was as effective as two doses if the single injection was given 24 h before macrophage harvest. In subsequent experiments, mice were given multiple injections of 10 micrograms rMu-IFN-gamma beginning 24 h before or 2 h after infection with virulent T. cruzi. Mice treated with rMu-IFN-gamma had significantly lower parasitemias and decreased morbidity compared with control mice. Proliferative responses to Con A and antibody responses to SRBC were not significantly lowered in IFN-gamma-treated mice, in contrast to untreated infected controls. All of the IFN-gamma-treated mice survived acute T. cruzi infection, whereas 100% of saline-treated infected mice died. It was demonstrated in this study that rMu-IFN-gamma activated mouse macrophages in vivo to kill T. cruzi and that rMu-IFN-gamma significantly reduced morbidity and immune suppression, and eliminated mortality resulting from acute infection with this parasite.  相似文献   

11.
Mice infected with the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease, develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC), hapten-conjugated SRBC (TNP-SRBC), and horse erythrocytes (TNP-HRBC). Studies in vivo demonstrated that anti-SRBC responses were best enhanced when T. cruzi-infected mice were injected with primed T cells derived from normal or infected mice immunized four days previously. The presence of enhancing capacities for DPFC responses by T cells from T. cruzi-infected mice were also supported by experiments examining the hapten-carrier effect. Preimmunization of infected mice with SRBC or HRBC four days before injection of hapten-homologous (TNP-SRBC or TNP-HRBC) carrier resulted in markedly augmented anti-hapten antibody responses. These results show that functional help provided by T cells activated during priming and exposed to a challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in T. cruzi-infected mice.  相似文献   

12.
In experimental murine infections with Trypanosoma rangeli it has been observed development immune response to Trypanosoma cruzi. The aim of the present work was to analyze the result of antigenic stimuli and the protective effect with T. rangeli in T. cruzi infections. Mice groups immunized with metacyclic trypomastigotes of T. rangeli (Choach -2V strain), derived from haemolymph and salivary gland and reinfected with T. cruzi virulent populations (Tulahuen strain, SA strain and Dm28c clone) from infected in vitro cells, showed decrease severity of disease outcomes, low parasitemia levels and 100% survival of all mice immunized, in comparison with groups infected only with T. cruzi populations, which demonstrated tissue affection, high parasitemia levels and the death of all animals. The above mentioned data contribute to understand the biological behaviour of T. cruzi and T. rangeli and their interaction with vertebrate host.  相似文献   

13.
Host resistance to Trypanosoma cruzi infection depends on a type 1 response characterized by a strong production of IL-12 and IFN-gamma. Amplifying this response through CD40 triggering results in control of parasitemia. Two newly synthesized molecules (<3 kDa) mimicking trimeric CD40L (mini CD40Ls(-1) and (-2)) bind to CD40, activate murine dendritic cells, and elicit IL-12 production. Wild-type but not CD40 knockout mice exhibited a sharp decrease of parasitemia and mortality when inoculated with T. cruzi mixed with miniCD40Ls. Moreover, the immunosuppression induced by T. cruzi infection was impaired in mice treated with miniCD40Ls, as shown by proliferation of splenic lymphocytes, percentage of CD8(+) T cells, and IFN-gamma production. Mice surviving T. cruzi infection in the presence of miniCD40L(-1) were immunized against a challenge infection. Our results indicate that CD40L mimetics are effective in vivo and promote the control of T. cruzi infection by overcoming the immunosuppression usually induced by the parasites.  相似文献   

14.
In America, there are two species of Trypanosoma that can infect humans: Trypanosoma cruzi, which is responsible for Chagas disease and Trypanosoma rangeli, which is not pathogenic. We have developed a model of vaccination in mice with T. rangeli epimastigotes that protects against T. cruzi infection. The goal of this work was to study the pattern of specific immunoglobulins in the peritoneum (the site of infection) and in the sera of mice immunized with T. rangeli before and after challenge with T. cruzi. Additionally, we studied the effects triggered by antigen-antibodies binding and the levels of key cytokines involved in the humoral response, such as IL-4, IL-5 and IL-6. The immunization triggered the production of antibodies reactive with T. cruzi in peritoneal fluid (PF) and in serum, mainly IgG1 and, to a lesser magnitude, IgG2. Only immunized mice developed specific IgG3 antibodies in their peritoneal cavities. Antibodies were able to bind to the surface of the parasites and agglutinate them. Among the cytokines studied, IL-6 was elevated in PF during early infection, with higher levels in non-immunized-infected mice. The results indicate that T. rangeli vaccination against T. cruzi infection triggers a high production of specific IgG isotypes in PF and sera before infection and modulates the levels of IL-6 in PF in the early periods of infection.  相似文献   

15.
The effect of sub-lethal doses of coronaviruses on the course of disease in CBA mice experimentally infected with a mildly pathogenic strain of Trypanosoma cruzi was investigated. Mice were inoculated with either T. cruzi, 0.1 median lethal dose (LD50) of coronavirus (mouse hepatitis virus [MHV-3] or virus X), or both pathogens. Levels of parasitemia, mortality, and the extent of pathologic alterations in lymphoid organs were determined. Mice inoculated with T. cruzi had mild alterations in their lymphoid organs and survived infection. In contrast, mice inoculated with both pathogens died, and had significantly higher levels of parasitemia and profound alterations in lymphoid organs. These results indicate that the pathologic profile of T. cruzi infection can be profoundly altered by subclinical infection with coronaviruses.  相似文献   

16.
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.  相似文献   

17.
A single intradermal injection of frozen and thawed schistosomula in conjunction with the bacterial adjuvant Mycobacterium bovis strain Bacille Calmette Guerin, Phipps substrain (BCG) induced significant levels of resistance to challenge Schistosoma mansoni infection in C57BL/6 mice. Immunization with the aqueous fraction remaining after 100,000 X G centrifugation of the larval lysate was also protective under these conditions, suggesting that some immunogenic determinants may not be membrane associated. Frozen-thawed cercariae and soluble components of adult worms also protected against challenge infection in these experiments. These observations indicate that soluble immunogens are present in both early and late developmental stages of the parasite, and therefore may be good candidate antigens for an immunochemically defined vaccine against schistosomiasis. Induction of humoral reactivity against soluble or membrane antigens was examined in mice protected against cercarial challenge by prior exposure to frozen-thawed larvae, soluble larval, or soluble adult antigens plus BCG. Animals that were immunized with frozen-thawed larvae produced low but significant levels of antibodies against larval surface antigens when examined by indirect immunofluorescence or by immunoprecipitation of surface-labeled schistosomula. Mice immunized with soluble antigens, however, showed negligible antibody reactivity against surface membrane antigens. Because mice immunized with soluble antigens were resistant to challenge infection, these results strongly suggest that anti-surface membrane reactivity is not required in the mechanism of protective immunity in this model. Sera from mice immunized with either total freeze-thaw larval lysate or soluble schistosome extracts all showed strong reactivity against soluble antigens, as detected by ELISA. Western blot analysis showed these antisera to react with a restricted number of high m.w. antigens that were present both in schistosomula and in adult worms. These antigens are therefore likely to play a major role in the development of resistance in this model as immunogens and/or as targets of protective immune response.  相似文献   

18.
Living culture forms of “Leptomonas pessoai” cross protected mice against T. cruzi challenge infection. Circulating antibodies have been detected in the immunized mice by immunodiffusion analysis, passive hemagglutination, complement fixation test and antibody binding assay; these antibodies cross reacted with T. cruzi extracts. A cellular immune response was indicated by leucocyte migration inhibition using L. pessoai and T. cruzi antigens, strongly suggesting a role for cell-mediated immunity in the mechanism of protection induced by L. pessoai.  相似文献   

19.
In previous works it has been demonstrated that Balb/c albino mice immunized with Trypanosoma rangeli developed cellular and humoral immune response to Tripanosoma cruzi. Moreover, the immunized animals were protected against lethal infection by virulent T. cruzi trypomastigotes. In fact, immunized mice had significantly lower parasitemias and longer survival than controls. To go further in this experimental model, the aim of the present work was to analyze the effect of the number of antigenic stimuli and the conservation of the antigen on the effectiveness of protective effect. For that purpose, three different immunization schedules injecting T. rangeli epimastigotes fixed with glutaraldehide and emulsified with Saponin (SAP) as adjuvant were assayed. Different lots of mice which received only phosphate buffer saline or SAP were used as controls. In another set of experiments the conservation of the antigen during 90 days at 4 degrees C was studied. In all the experiments mice were infected with 100 trypomastigotes of T. cruzi, Tulahuén strain. The parasitemias were analyzed on 13th, 16th and 21st post infection days, and the survival until the 60th day. The results revealed that one dose of antigen was inadequate to give an effective protection. On the other hand, mice immunized with 2 and 3 dose showed a significant decrease of parasitemia with regard to controls (p < 0.001 - p < 0.0001) and the survival were markedly increased. Likewise, the antigen kept during 90th days at 4 degrees C showed similar protective efficacy than fresh antigen. Both of these experimental groups showed significant differences with respect to control animals in parasitemia (p < 0.05 - p > 0.01) and survival (p < 0.01). In conclusion, the results of this work showed that in the experimental conditions assayed, the immunization with T. rangeli trigger and adequate immune response when mice received at least two antigenic stimuli. Likewise, it is interesting to point out the stability of the antigenic preparation during at least 90th days.  相似文献   

20.
Isotypic analysis of anti-parasite humoral responses of C57B1/6 and C3H (He) mice surviving acute Trypanosoma cruzi infection showed that both mouse strains demonstrate IgG1, IgG2a, IgG2b, and IgM enzyme-linked immunosorbent assay titers from days 21 to 300 of infection. Using the western blot technique to determine the antigen specificity of the isotypic responses, 100-day infected C3H mice showed strong IgG1, IgG2a, and IgG2b responses to many antigens, whereas C57B1/6 mice showed weak responses to fewer antigens. Isotype western blots showed that reactivity to the T. cruzi antigen of 75-77 kDa is present in the humoral response of day 21-infected mice that will survive and missing in those that will not survive. In general, surviving immunized C3H mice respond with IgG1, IgG2a, and IgG2b reactions to the 75-77-kDa and other antigens, whereas resistant B6 mice concentrate their anti-T. cruzi response in the IgG2b isotype to the 75-77-kDa antigen. Perhaps induction of ineffective antibody responses to nonprotective antigens is beneficial to the parasite and detrimental to the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号