首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of DNA with the analogs of the antibiotic distamycin A having different numbers of pyrrolcarboxamide groups and labeled with dansyl was studied. The binding isoterms of the analogs to synthetic polydeoxyribonucleotides were obtained. Analysis of the experimental data leads to the following conclusions: (1) the free energy of binding of the analogs to poly(dA).poly(dT) depends linearly on the number of amide groups in the molecule of the analog whereas attachment of each pyrrolcarboxamide group produces changes of 2 kcal/mole in the free energy; (2) attachment of a pyrrolcarboxamide unit to the GC pair results in the free energy change of 0.95 kcal/mole; (3) the binding of analogs to poly(dA).poly(dT) is a cooperative process, presumbly, dependent on conformational changes induced by the binding of analogs to DNA.  相似文献   

2.
The rate at which equine and macaque ovarian tissue sections are first cooled from +25 degrees C to +4 degrees C has a significant effect on the measured water transport when the tissues are subsequently frozen in 0.85 M solutions of glycerol, dimethylsulfoxide (DMSO), or ethylene glycol (EG). To determine whether the response of ovarian tissues is altered if they are suspended in mixtures of cryoprotective agents (CPAs), rather than in solutions of a single CPA, we have now measured the subzero water transport from ovarian tissues that were suspended in mixtures of DMSO and EG. Sections of freshly collected equine and macaque ovaries were suspended either in a mixture of 0.9 M EG plus 0.7 M DMSO (equivalent to a mixture of approximately 5% vv of EG and DMSO) or in a 1.6M solution of only DMSO or only EG. The tissue sections were cooled from +25 degrees C to +4 degrees C and then frozen to subzero temperatures at 5 degrees C/min. As the tissues were being frozen, a shape-independent differential scanning calorimeter technique was used to measure water loss from the tissues and, consequently, the best fit membrane permeability parameters (L(pg) and E(Lp)) of ovarian tissues during freezing. In the mixture of DMSO+EG, the respective values of L(pg) and E(Lp) for equine tissue first cooled at 40 degrees C/min between +25 degrees C and +4 degrees C before being frozen were 0.15 microm/min atm and 7.6 kcal/mole. The corresponding L(pg) and E(Lp) values for equine tissue suspended in 1.6M DMSO were 0.12 microm/min atm and 27.2 kcal/mole; in 1.6M EG, the values were 0.06 microm/min atm and 21.9 kcal/mole, respectively. For macaque ovarian tissues suspended in the mixture of DMSO+EG, the respective values of L(pg) and E(Lp) were 0.26 microm/min atm and 26.2 kcal/mole. Similarly, the corresponding L(Lg) and E(Lp) values for macaque tissue suspended in 1.6M DMSO were 0.22 microm/min atm and 31.4 kcal/mole; in 1.6 M EG, the values were 0.20 microm/min atm and 27.9 kcal/mole. The parameters for both equine and macaque tissue samples suspended in the DMSO+EG mixture and first cooled at 0.5 degrees C/min between +25 degrees C and +4 degrees C were very similar to the corresponding values for samples cooled at 40 degrees C/min. In contrast, the membrane parameters of equine and macaque samples first cooled at 0.5 degrees C/min in single-component solutions were significantly different from the corresponding values for samples cooled at 40 degrees C/min. These results show that the membrane properties of ovarian cells from two species are different, and that the membrane properties are significantly affected both by the solution in which the tissue is suspended and by the rate at which the tissue is cooled from +25 degrees C to +4 degrees C before being frozen. These observations suggest that these variables ought to be considered in the derivation of methods to cryopreserve ovarian tissues.  相似文献   

3.
The (+) anti isomer of benz[a]pyrene diol epoxide (BPDE), 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenz [a] pyrene has been identified as the probable tumorigenic lesion in mammalian systems. It forms a predominant adduct with DNA at N2 of guanine. In order to elucidate its conformation in atomic resolution detail, minimized conformational potential energy calculations were performed for the adduct with dCpdG. A global conformation search involving about 1000 trials was made. The lowest energy conformation had stacking between the hydrocarbon and the adjacent cytidine, in agreement with CD studies on modified GpU and UpG. This conformer differed from the B form most notably in the guanine glycosidic torsion, which is high anti. The next lowest energy form had torsion angles like the B form, with guanine-cytidine stacking. These two conformers differ in energy by only 2.1 kcal./mole, suggesting that their relative stability could easily be reversed in larger polymers, or under specific environmental conditions. Other conformations, with base-hydrocarbon or base-base stacking are also found, at somewhat higher energies. The Z form is at 7.8 kcal./mole. Thus, this adduct stabilizes the B form, in contrast with the N2 linked AAF adduct, which stabilizes the Z conformation.  相似文献   

4.
Abstract

The (+) anti isomer of benz[a]pyrene diol epoxide (BPDE), 7β, 8a-dihydroxy-9α,10α-epoxy- 7,8,9,10-tetrahydrobenz[a]pyrene has been identified as the probable tumorigenic lesion in mammalian systems. It forms a predominant adduct with DNA at N2 of guanine. In order to elucidate its conformation in atomic resolution detail, minimized conformational potential energy calculations were performed for the adduct with dCpdG. A global conformation search involving about 1000 trials was made. The lowest energy conformation had stacking between the hydrocarbon and the adjacent cytidine, in agreement with CD studies on modified GpU and UpG. This conformer differed from the B form most notably in the guanine glycosidic torsion, which is high anti. The next lowest energy form had torsion angles like the B form, with guanine-cytidine stacking. These two conformers differ in energy by only 2.1 kcal./mole, suggesting that their relative stability could easily be reversed in larger polymers, or under specific environmental conditions. Other conformations, with base-hydrocarbon or base-base stacking are also found, at somewhat higher energies. The Z form is at 7.8 kcal./mole. Thus, this adduct stabilizes the B form, in contrast with the N2linked AAF adduct, which stabilizes the Z conformation.  相似文献   

5.
Absorbance and fluorescence methods were used to measure the binding of the anticancer drug daunomycin to poly (dGdC) under ionic conditions that initially favor the left-handed Z conformation of the polymer. Drug binding was cooperative under these conditions and may be fully accounted for by an allosteric model in which the drug binds preferentially (but not exclusively) to the right-handed B conformation and shifts the polymer from the Z to an intercalated right-handed conformation. Quantitative analysis of binding isotherms in terms of the allosteric model allowed for estimation of the equilibrium constants for the conversion of a base pair at a B-Z interface from the Z to the B conformation and for the formation of a base pair in the B conformation within a stretch of helix in the Z conformation. The free energy of the Z to B conversion of a base pair was calculated from this data and ranges from +0.03 to +0.3 kcal/mol over the NaCl range of 2.4-3.5 M. The free energy for the formation of a B-Z junction was nearly constant at +4.0 kcal/mol over the same range of NaCl concentrations. The salt dependence of the free energy of the Z to B transition indicates preferential Na+ binding to the Z form and that there is a net release of Na+ upon conversion of a base pair from the Z to the B conformation. The energetically unfavorable Z to B transition was found by this analysis to be driven by coupling to the energetically favorable interaction of daunomycin with B form DNA. In 3.5 M NaCl, for example, the free energy change for the overall reaction (Z DNA base pairs) + (daunomycin) in equilibrium with (right-handed complex) is -7.0 kcal/mol, nearly all of which is contributed by the binding of drug to B DNA. Analysis using the allosteric model also shows that the number of base pairs converted from the Z to the B conformation per bound drug molecule is salt dependent and provides evidence that drug molecules partition into regions of the polymer in the right-handed conformation.  相似文献   

6.
K B Hall  L W McLaughlin 《Biochemistry》1991,30(44):10606-10613
Four pentamers with the general sequence 5'CU(T)GU(T)G/5'CACAG have been prepared by chemical synthesis in order to generate duplex structures with common sequences. The four duplexes studied include the DNA.DNA duplex (5'dCACAG/5'dCTGTG) and the RNA.RNA duplex (5'rCUGUG/5'rCACAG) as well as the two corresponding DNA.RNA heteroduplexes (5'rCUGUG/5'dCACAG and 5'CACAG/5'dCTGTG). The measured entropy, enthalpy, and free energy changes upon melting are reported for each pentamer and compared to the predicted values where possible. Results show that the two DNA.RNA heteroduplexes are destabilized (delta G degrees 25 = -4.2 +/- 0.4 kcal/mol) relative to either the DNA.DNA duplex (delta G degrees 25 = -4.8 +/- 0.5 kcal/mol) or the RNA.RNA duplex (delta G degrees 25 = -5.8 +/- 0.6 kcal/mol). Circular dichroism spectra indicate that the RNA and the two heteroduplexes adopt an A-form conformation, while the DNA conformation is B-form. Imino proton NMR spectra also show that the heteroduplex structures resemble the RNA.RNA duplex.  相似文献   

7.
A molecular orbital study of the conformation of formycin   总被引:2,自引:0,他引:2  
Semiempirical quantum mechanical calculations, using the iterative extended Huckel theory, are carried out for the evaluation of conformational energies, dipole moment and net atomic charges as a function of the rotation about the glycosidic bond. Torsion about the C(4′)-C(5′) bond has also been considered. The energy diagrams for either the gg or gt rotamers of formycin predict that neither the first or the second energy minimum fall in the classical anti or syn regions. The predicted energy difference between the two most preferred conformations is rather large (3 kcal/mole). In contrast adenosine is predicted to favor the anti conformation by less than 1 kcal/mole. Barriers to internal counter-clockwise rotation about the glycosidic bond are higher for adenosine.  相似文献   

8.
Structural properties of biomolecules are dictated by their intrinsic conformational energetics in combination with environmental contributions. Calculations using high-level ab initio methods on the deoxyribonucleosides have been performed to investigate the influence of base on the intrinsic conformational energetics of nucleosides. Energy minima in the north and south ranges of the deoxyribose pseudorotation surfaces have been located, allowing characterization of the influence of base on the structures and energy differences between those minima. With all bases, chi values associated with the south energy minimum are lower than in canonical B-DNA, while chi values associated with the north energy minimum are close to those in canonical A-DNA. In deoxycytidine, chi adopts an A-DNA conformation in both the north and south energy minima. Energy differences between the A and B conformations of the nucleosides are <0.5 kcal/mol in the present calculations, except with deoxycytidine, where the A form is favored by 2.3 kcal/mol, leading the intrinsic conformational energetics of GC basepairs to favor the A form of DNA by 1.5 kcal/mol as compared with AT pairs. This indicates that the intrinsic conformational properties of cytosine at the nucleoside level contribute to the A form of DNA containing predominately GC-rich sequences. In the context of a B versus Z DNA equilibrium, deoxycytidine favors the Z form over the B form by 1.6 kcal/mol as compared with deoxythymidine, suggesting that the intrinsic conformational properties of cytosine also contribute to GC-rich sequences occurring in Z DNA with a higher frequency than AT-rich sequences. Results show that the east pseudorotation energy barrier involves a decrease in the furanose amplitude and is systematically lower than the inversion barrier, with the energy differences influenced by the base. Energy barriers going from the south (B form) sugar pucker to the east pseudorotation barrier are lower in pyrimidines as compared with purines, indicating that the intrinsic conformational properties associated with base may also influence the sugar pseudorotational population distribution seen in DNA crystal structures and the kinetics of B to A transitions. The present work provides evidence that base composition, in addition to base sequence, can influence DNA conformation.  相似文献   

9.
We have used metadynamics to investigate the mechanism of noncovalent dissociation from DNA by two representatives of alkylating and noncovalent minor groove (MG) binders. The compounds are anthramycin in its anhydrous form (IMI) and distamycin A (DST), which differ in mode of binding, size, flexibility and net charge. This choice enables to evaluate the influence of such factors on the mechanism of dissociation. Dissociation of IMI requires an activation free energy of approximately 12 kcal/mol and occurs via local widening of the MG and loss of contacts between the drug and one DNA strand, along with the insertion of waters in between. The detachment of DST occurs at a larger free energy cost, approximately 16.5 or approximately 18 kcal/mol depending on the binding mode. These values compare well with that of 16.6 kcal/mol extracted from stopped-flow experiments. In contrast to IMI, an intermediate is found in which the ligand is anchored to the DNA through its amidinium tail. From this conformation, binding and unbinding occur almost at the same rate. Comparison between DST and with kinetic models for the dissociation of Hoechst 33258 from DNA uncovers common characteristics across different classes of noncovalent MG ligands.  相似文献   

10.
Prediction of DNA structure from sequence: a build-up technique   总被引:2,自引:0,他引:2  
A build-up technique has been devised that permits prediction of DNA structure from sequence. No experimental information is employed other than the force field parameters. This strategy for dealing with the multiple minimum problem requires a supercomputer to make the necessary global searches. The number of energy minimization trials that were made for each of the 16 deoxydinucleoside monophosphate conformational building blocks of DNA was 1944. As a test case, the minimum energy conformations of d(GpC) and d(CpG) to 5.5 kcal/mole were then combined to generate energy-minimized structures for d(CpGpC). The number of trials that were made for d(CpGpC) was 3752. Minima for this single-stranded trimer to 15 kcal/mole were then employed to search for minimum energy conformations of the duplex d(CpGpC).d(GpCpG). The number of starting conformations that were utilized at this stage was 1514. The lowest energy duplex had a Z-II-DNA conformation, followed by a B-DNA form at 1.2 kcal/mole. The A- and Z-I-forms as well as many novel Watson-Crick base-paired structures were found at higher energy. Finally, energy-minimized structures of d(CG)6.d(CG)6 in Z-II and B-DNA conformations were computed using torsion angles from the analogous duplex trimer minima.  相似文献   

11.
Poly[d(G-C)] in a 55% ethanol solution undergoes a transition from the Z form to the B form when the temperature is increased from 20 degrees to 50 degrees C. The enthalpy of the transition, delta HBA = -1.4 kcal/mol, has been determined with a "tie" polyamine which stabilizes the Z conformation. This value has been shown to be practically independent of ionic strength within the range of 5 X 10(-4) M - 2 X 10(-3) M NaCl.  相似文献   

12.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

13.
Calorific Content of Certain Bacteria and Fungi   总被引:2,自引:1,他引:1       下载免费PDF全文
Calorific contents of dried cells of several representative species of bacteria (gram-negative rods and gram-positive rods and cocci), two species of yeasts, and a filamentous fungus were determined by bomb calorimetry. The grand mean was 5,383 cal per g of ash-free dry weight. This value was then used to determine quantity of energy assimilated (E(a)) during growth. Subsequently, E(a) was employed in the equation: Y(kcal) = Y/(E(a) + E(d)), where Y(kcal) is the yield of cells per kilocalorie of energy taken from a culture medium, Y is the yield per mole of substrate utilized, E(a) is Y times caloric content of the cells, and E(d) is the energy expended by oxidative dissimilation. An estimate of E(d) was obtained for a number of experiments by multiplying the moles of oxygen consumed per mole of substrate utilized during growth by the average quantity of energy utilized to reduce a mole of oxygen with electrons from organic compounds (106 kcal). From previous studies in our laboratories, a value for Y(kcal) of 0.118 g/kcal was predicted. The mean value for data from five studies of aerobic growth of prototrophic heterotrophs was found to be 0.111.  相似文献   

14.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

15.
The chemical probes potassium permanganate (KMnO4) and diethylpyrocarbonate (DEPC) have been used to study the conformation of bent kinetoplast DNA from Crithidia fasciculata at different temperatures. Chemical reactivity data shows that the numerous short A-tracts of this bent DNA adopt a similar structure at 43 degrees C. This conformation appears to be very similar to the conformation of A-tracts in DNA exhibiting normal gel mobility. The A-tract structure detected by chemical probing is characterized by a high degree of base stacking on the thymine strand, and by an abrupt conformational change at the 3' end of the adenine strand. In general, no major alteration of this A-tract specific structure was detected between 4-53 degrees C. However, probing with KMnO4 revealed two unusual features of the C. fasciculata sequence that may contribute to the highly aberrant gel mobility of this DNA: 1) the B DNA/A-tract junction 5' dC/A3-6 3'. 5' dT3-6/G 3' is disproportionately represented and is conformationally distinct from other 5' end junctions, and 2) low temperature favors a novel strand-specific conformational distortion over a 20 base pair region of the bent kinetoplast DNA. Presence of the minor groove binding drug distamycin had little detectable effect on the A-tract conformation. However, distamycin did inhibit formation of the novel KMnO4 sensitive low temperature structure and partially eliminated the anomalous gel mobility of the kinetoplast DNA. Finally, we describe a simple and reproducible procedure for the production of an adenine-specific chemical DNA sequence ladder.  相似文献   

16.
The B-to-Z transition in supercoiled circular DNA is modeled as a strain-induced nonlinear excitation process. Using a model, in which DNA is regarded as a chain of units with a bistable energy function along the twisting coordinate together with a harmonic inter-unit interaction, we show that a Z region and the accompanying two B-Z junctions of finite width appear naturally as a solution of nonlinear equations, when the strain exceeds a critical value. We examine the B-Z transition behaviour as a function of twist under various situations. We also analyse available experimental results on B-Z transition in supercoiled plasmid with G-C insertions by this mechanistic model in order to estimate the magnitude of model parameters. The energy barrier of the B-Z transition is estimated to be of the order of 1 kcal/mole per base pair. The analysis shows that if the length of the insertion is less than a certain value, the entire insertion converts to Z form at a transition point, but if the insertion is much longer, the B-Z transition exhibits a different behavior, in which part of the insertion flips to Z form and the Z region expands linearly upon changing linking number.  相似文献   

17.
In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the dehydration response during freezing of sperm cells from diploid and tetraploid Pacific oysters, Crassostrea gigas. This represents the first application of the DSC technique to sperm cells from nonmammalian species. Volumetric shrinkage during freezing of oyster sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 8% (v/v) concentration of dimethyl sulfoxide (DMSO), a commonly used cryoprotective agent (CPA). Using previously published data, sperm cells from diploid oysters were modeled as a two-compartment "ball-on-stick" model with a "ball" 1.66 microm in diameter and a "stick" 41 microm in length and 0.14 microm wide. Similarly, sperm cells of tetraploid oysters were modeled with a "ball" 2.14 microm in diameter and a "stick" 53 microm in length and 0.17 microm wide. Sperm cells of both ploidy levels were assumed to have an osmotically inactive cell volume, Vb, of 0.6 Vo, where Vo is the isotonic (or initial) cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (Lpg and ELp) were determined. The combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for haploid sperm cells (or cells from diploid Pacific oysters) in the absence of CPAs were: Lpg = 0.30 x 10(-15) m(3)/Ns (0.0017 microm/min-atm) and ELp = 41.0 kJ/mole (9.8 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.27 x 10(-15) m(3)/Ns (0.0015 microm/min-atm) and ELp[cpa] = 38.0 kJ/mole (9.1 kcal/mole). Similarly, the combined-best-fit membrane permeability parameters at 5 and 20 degrees C/min for diploid sperm cells (or cells from tetraploid Pacific oysters) in the absence of CPAs were: Lpg = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp = 29.7 kJ/mole (7.1 kcal/mole). The corresponding parameters in the presence of 8% DMSO were: Lpg[cpa] = 0.34 x 10(-15) m(3)/Ns (0.0019 microm/min-atm) and ELp[cpa] = 37.6 kJ/mole (9.0 kcal/mole). The parameters obtained in this study suggest that optimal rates of cooling for Pacific oyster sperm cells range from 40 to 70 degrees C/min. These theoretical cooling rates are in close conformity with empirically determined optimal rates of cooling sperm cells from Pacific oysters, C. gigas.  相似文献   

18.
Conformational changes of apo A-1, the principal apoprotein of human plasma high density lipoprotein, have been studied by differential scanning calorimetry and ultraviolet difference spectroscopy as a function of temperature, pH, concentration of apoprotein, and urea concentration. Calorimetry shows that apo A-1 (5 to 40 mg/ml, pH 9.2) undergoes a two-state, reversible denaturation (enthalpy = 64 +/- 8.9 kcal/mole), between 43--71 degrees (midpoint temperature, Tm = 54 degrees), associated with a rise in heat capacity (deltaCvd) of 2.4 +/- 0.5 kcal/mole/degrees C. Apo A-1 (0.2 to 0.4 mg/ml, pH 9.2) develops a negative difference spectrum between 42--70 degrees, with Tm = 53 degrees. The enthalpy (deltaH = 59 +/- 5.7 kcal/mole at Tm) and heat capacity change (2.7 +/- 0.9 kcal/mole/degrees C) in the spectroscopic experiments were not significantly different from the calorimetric values. Below pH 9 and above pH 11, the calorimetric Tm and deltaH of denaturation are decreased. In the pH range of reversible denaturation (6.5 to 11.8), delatH and Tm are linearly related, showing that the heat capacity change (ddeltaH/dT) associated with denaturation is independent of Tm. In urea solutions, the calorimetric Tm and deltaH of denaturation are decreased. At 25 degrees, apo A-1 develops a negative difference spectrum between 1.4 and 3 M urea. Fifty per cent of the spectral change occurs in 2.4 M urea, which corresponds to the urea concentration obtained by extrapolation of the calorimetric Tm to 25 degrees. In urea solution of less than 0.75 M there is hyperchromicity at 285 nm (delta epsilon = 264 in 0.75 M urea), indicating strong interaction of aromatic amino acid residues in the native molecule with the solvent. Spectrophotometric titration of apo A-1 shows that 6.6 of the 7 tyrosine groups of apo A-1 titrate at pH less than 11.9, with similar titration curves obtained in aqueous solutions and in 6 M urea. The free energy of stabilization (deltaG) of the native conformation of apo A-1 was estimated, (a) at 37 degrees, using the calorimetric deltaA and deltaCvd, and (b) at 25 degrees, by extrapolation of spectroscopic data to zero urea concentration. The values (deltaG (37 degrees) = 2.4 and deltaG (25 degrees) = 2.7 kcal/mole) are small compared to typical globular proteins, indicating that native apo A-1 has a loosely folded tertiary structure. The low values of deltaG reflect the high degree of exposure of hydrophobic areas in the native protein molecule. The loosely folded conformation of apo A-1 allows extensive binding of lipid, since this can involve both surface hydrophobic sites and hydrophobic areas exposed by a cooperative, low energy unfolding process.  相似文献   

19.
Incomplete understanding of the water transport parameters (reference membrane permeability, L(pg), and activation energy, E(Lp)) during freezing in the presence of extracellular ice and cryoprotective agents (CPAs) is one of the main limiting factors in reconciling the difference between the numerically predicted value and the experimentally determined optimal rates of freezing in boar (and in general mammalian) gametes. In the present study, a shape-independent differential scanning calorimeter (DSC) technique was used to measure the water transport during freezing of boar spermatozoa. Water transport data during freezing of boar sperm cell suspensions were obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and 6% (v/v) glycerol. Using previously published values, the boar sperm cell was modeled as a cylinder of length 80.1 microm and a radius of 0.31 microm with an osmotically inactive cell volume, V(b), of 0.6 V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained data, the best-fit water transport parameters (L(pg) and E(Lp)) were determined. The "combined-best-fit" parameters at 5 and 20 degrees C/min for boar spermatozoa in the presence of extracellular ice are: L(pg) = 3.6 x 10(-15) m(3)/N. s (0.02 microm/min-atm) and E(Lp) = 122.5 kJ/mole (29.3 kcal/mole) (R(2) = 0.99); and the corresponding parameters in the presence of extracellular ice and glycerol are: L(pg)[cpa] = 0.90 x 10(-15) m(3)/N. s (0.005 microm/min-atm) and E(Lp)[cpa] = 75.7 kJ/mole (18.1 kcal/mole) (R(2) = 0.99). The water transport parameters obtained in the present study are significantly different from previously published parameters for boar and other mammalian spermatozoa obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The theoretically predicted optimal rates of freezing using the new parameters ( approximately 30 degrees C/min) are in close agreement with previously published but experimentally determined optimal cooling rates. This analysis reconciles a long-standing difference between theoretically predicted and experimentally determined optimal cooling rates for boar spermatozoa.  相似文献   

20.
Thermus thermophilus ribonuclease H was overexpressed and purified from Escherichia coli. The determination of the complete amino acid sequence allowed modification of that predicted from the DNA sequence, and the enzyme was shown to be composed of 166 amino acid residues with a molecular weight of 18,279. The isoelectric point of the enzyme was 10.5, and the specific absorption coefficient A0.1%(280) was 1.69. The enzymatic and physicochemical properties as well as the thermal and conformational stabilities of the enzyme were compared with those of E. coli RNase HI, which shows 52% amino acid sequence identity. Comparison of the far and near UV circular dichroism spectra suggests that the two enzymes are similar in the main chain folding but different in the spatial environments of tyrosine and tryptophan residues. The enzymatic activities of T. thermophilus RNase H at 37 and 70 degrees C for the hydrolysis of either an M13 DNA/RNA hybrid or a nonanucleotide duplex were approximately 5-fold lower and 3-fold higher, respectively, as compared with E. coli RNase HI at 37 degrees C. The melting temperature, Tm, of T. thermophilus RNase H was 82.1 degrees C in the presence of 1.2 M guanidine hydrochloride, which was 33.9 degrees C higher than that observed for E. coli RNase HI. The free energy changes of unfolding in the absence of denaturant, delta G[H2O], of T. thermophilus RNase H increased by 11.79 kcal/mol at 25 degrees C and 14.07 kcal/mol at 50 degrees C, as compared with E. coli RNase HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号